資源描述:
《構(gòu)建建模思維 培養(yǎng)創(chuàng)新意識》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、構(gòu)建建模思維培養(yǎng)創(chuàng)新意識 提高中學(xué)數(shù)學(xué)教學(xué)質(zhì)量,不僅僅是為了提高學(xué)生的數(shù)學(xué)成績,更重要的是能使學(xué)生學(xué)到有用的數(shù)學(xué)。為此,筆者認(rèn)為在中學(xué)數(shù)學(xué)教學(xué)中構(gòu)建數(shù)學(xué)建模意識無疑是我們中學(xué)數(shù)學(xué)教學(xué)改革的一個正確的方向。本文結(jié)合自己的教學(xué)體會,從理論上及實踐上闡述:1、構(gòu)建數(shù)學(xué)建模意識的基本方法。2、通過建模教學(xué)培養(yǎng)學(xué)生的創(chuàng)新思維。 一、數(shù)學(xué)建模與數(shù)學(xué)建模意識 所謂數(shù)學(xué)模型,是指對于現(xiàn)實世界的某一特定研究對象,為了某個特定的目的,在做了一些必要的簡化假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具,并通過數(shù)學(xué)語言表述出來的一個數(shù)學(xué)結(jié)構(gòu),數(shù)學(xué)中的各種基
2、本概念,都以各自相應(yīng)的現(xiàn)實原型作為背景而抽象出來的數(shù)學(xué)概念。各種數(shù)學(xué)公式、方程式、定理、理論體系等等,都是一些具體的數(shù)學(xué)模型。舉個簡單的例子,二次函數(shù)就是一個數(shù)學(xué)模型,很多數(shù)學(xué)問題甚至實際問題都可以轉(zhuǎn)化為二次函數(shù)來解決。而通過對問題數(shù)學(xué)化,模型構(gòu)建,求解檢驗使問題獲得解決的方法稱之為數(shù)學(xué)模型方法。我們的數(shù)學(xué)教學(xué)說到底實際上就是教給學(xué)生前人給我們構(gòu)建的一個個數(shù)學(xué)模型和怎樣構(gòu)建模型的思想方法,以使學(xué)生能運(yùn)用數(shù)學(xué)模型解決數(shù)學(xué)問題和實際問題?! 《?、構(gòu)建數(shù)學(xué)建模意識的基本途徑5 1、為了培養(yǎng)學(xué)生的建模意識,中學(xué)數(shù)學(xué)教師應(yīng)首
3、先需要提高自己的建模意識。中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識應(yīng)用于現(xiàn)實生活?! ?、數(shù)學(xué)建模教學(xué)還應(yīng)與現(xiàn)行教材結(jié)合起來研究。如講立體幾何時可引入正方體模型或長方體模型把相關(guān)問題放入到這些模型中來解決;又如在解幾中講了兩點間的距離公式后,可引入兩點間的距離模型解決一些具體問題,而儲蓄問題、信用貸款問題則可結(jié)合在數(shù)列教學(xué)中。要經(jīng)常滲透建模意識,這樣通過教師的潛移默化,學(xué)生可以從各類大量的建模問題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激
4、發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運(yùn)用數(shù)學(xué)知識進(jìn)行建模的能力?! ?、注意與其它相關(guān)學(xué)科的關(guān)系。由于數(shù)學(xué)是學(xué)生學(xué)習(xí)其它自然科學(xué)以至社會科學(xué)的工具而且其它學(xué)科與數(shù)學(xué)的聯(lián)系是相當(dāng)密切的。例如教了正弦型函數(shù)后,可引導(dǎo)學(xué)生用模型函數(shù)y=Asin(wx+Φ)寫出物理中振動圖象或交流圖象的數(shù)學(xué)表達(dá)式。這樣的模型意識不僅僅是抽象的數(shù)學(xué)知識,而且將對他們學(xué)習(xí)其它學(xué)科的知識以及將來用數(shù)學(xué)建模知識探討各種邊緣學(xué)科產(chǎn)生深遠(yuǎn)的影響?! ∪褬?gòu)建數(shù)學(xué)建模意識與培養(yǎng)學(xué)生創(chuàng)造性思維過程統(tǒng)一起來 我認(rèn)為培養(yǎng)學(xué)生創(chuàng)造性思維的過程有三點基本要求。
5、第一,對周圍的事物要有積極的態(tài)度;第二,要敢于提出問題;第三,善于聯(lián)想,善于理論聯(lián)系實際。既要求思維的數(shù)量,還要求思維的深刻性和靈活性,而且在建模活動過程中,能培養(yǎng)學(xué)生獨(dú)立,自覺地運(yùn)用所給問題的條件,尋求解決問題的最佳方法和途徑,可以培養(yǎng)學(xué)生的想象能力,直覺思維、猜測、轉(zhuǎn)換、構(gòu)造等能力。5 1、發(fā)揮學(xué)生的想象能力,培養(yǎng)學(xué)生的直覺思維 通過數(shù)學(xué)建模教學(xué),使學(xué)生有獨(dú)到的見解和與眾不同的思考方法,如善于發(fā)現(xiàn)問題,溝通各類知識之間的內(nèi)在聯(lián)系等是培養(yǎng)學(xué)生創(chuàng)新思維的核心?! ±鹤C明sin5°+sin77°+sin149°+
6、sin221°+sin293°=0 分析:此題若作為“三角”問題來處理,當(dāng)然也可以證出來,但從題中的數(shù)量特征來看,發(fā)現(xiàn)這些角都依次相差72°,聯(lián)想到正五邊形的內(nèi)角關(guān)系,由此構(gòu)造一個正五邊形(如圖) 由于AB→+BC→+CD→+DE→+EA→=0 從而它們的各個向量在Y軸上的分量之和亦為0,故知原式成立。這里,正五邊形作為建模的對象恰到好處地體現(xiàn)了題中角度的數(shù)量特征。如果沒有一定的建模訓(xùn)練,是很難“創(chuàng)造”出如此簡潔、優(yōu)美的證明的?! ?、構(gòu)建建模意識,培養(yǎng)學(xué)生的轉(zhuǎn)換能力由于數(shù)學(xué)建模就是把實際問題轉(zhuǎn)換成數(shù)學(xué)問題,因
7、此如果我們在數(shù)學(xué)教學(xué)中注重轉(zhuǎn)化,用好這根有力的杠桿,對培養(yǎng)學(xué)生思維品質(zhì)的靈活性、創(chuàng)造性及開發(fā)智力、培養(yǎng)能力、提高解題速度是十分有益的?! ∪缭诮虒W(xué)中,我曾給學(xué)生介紹過“洗衣問題”:給你一桶水,洗一件衣服,如果我們直接將衣服放入水中就洗;或是將水分成相同的兩份,先在其中一份中洗滌,然后在另一份中清一下,哪種洗法效果好?如何從數(shù)學(xué)角度去解釋這個問題呢?我們借助于溶液的濃度的概念,把衣服上殘留的臟物看成溶質(zhì),設(shè)那桶水的體積為x,衣服的體積為y,而衣服上臟物的體積為z,當(dāng)然z應(yīng)非常小與x、y比可忽略不計。5 第一種洗法中,
8、衣服上殘留的臟物為xyx+y; 按第二種洗法:第一次洗后衣服上殘留的臟物為yzx2+y; 第二次洗后衣服上殘留的臟物為zy2〔x2+y〕; 這就證明了第二種洗法效果好一些。學(xué)生對這個問題的進(jìn)一步研究,無疑會激發(fā)其學(xué)習(xí)數(shù)學(xué)的主動性,且能開拓學(xué)生創(chuàng)造性思維能力,養(yǎng)成善于發(fā)現(xiàn)問題,獨(dú)立思考的習(xí)慣?! ?、以“構(gòu)造”為載體,培養(yǎng)學(xué)生的創(chuàng)新能力“一