資源描述:
《[ICML 2009 Honglak, Andrew] Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫。
1、ConvolutionalDeepBeliefNetworksforScalableUnsupervisedLearningofHierarchicalRepresentationsHonglakLeehllee@cs.stanford.eduRogerGrossergrosse@cs.stanford.eduRajeshRanganathrajeshr@cs.stanford.eduAndrewY.Ngang@cs.stanford.eduComputerScienceDepartment,StanfordUnive
2、rsity,Stanford,CA94305,USAAbstractlower-levelambiguitiesintheimageorinfertheloca-Therehasbeenmuchinterestinunsuper-tionsofhiddenobjectparts.visedlearningofhierarchicalgenerativemod-Deeparchitecturesconsistoffeaturedetectorunitsar-elssuchasdeepbeliefnetworks.Scal
3、ingrangedinlayers.Lowerlayersdetectsimplefeaturessuchmodelstofull-sized,high-dimensionalandfeedintohigherlayers,whichinturndetectmoreimagesremainsadicultproblem.Toad-complexfeatures.Therehavebeenseveralapproachesdressthisproblem,wepresenttheconvolu-tolearningde
4、epnetworks(LeCunetal.,1989;Bengiotionaldeepbeliefnetwork,ahierarchicalgen-etal.,2006;Ranzatoetal.,2006;Hintonetal.,2006).erativemodelwhichscalestorealisticimageInparticular,thedeepbeliefnetwork(DBN)(Hintonsizes.Thismodelistranslation-invariantandetal.,2006)isamu
5、ltilayergenerativemodelwheresupportsecientbottom-upandtop-downeachlayerencodesstatisticaldependenciesamongtheprobabilisticinference.Keytoourapproachunitsinthelayerbelowit;itistrainedto(approxi-isprobabilisticmax-pooling,anoveltechniquemately)maximizethelikeliho
6、odofitstrainingdata.whichshrinkstherepresentationsofhigherDBNshavebeensuccessfullyusedtolearnhigh-levellayersinaprobabilisticallysoundway.Ourstructureinawidevarietyofdomains,includinghand-experimentsshowthatthealgorithmlearnswrittendigits(Hintonetal.,2006)andhum
7、anmotionusefulhigh-levelvisualfeatures,suchasob-capturedata(Tayloretal.,2007).Webuilduponthejectparts,fromunlabeledimagesofobjectsDBNinthispaperbecauseweareinterestedinlearn-andnaturalscenes.Wedemonstrateexcel-ingagenerativemodelofimageswhichcanbetrainedlentperf
8、ormanceonseveralvisualrecogni-inapurelyunsupervisedmanner.tiontasksandshowthatourmodelcanper-formhierarchical(bottom-upandtop-down)WhileDBNshavebeensuccessfulincontro