人臉識(shí)別技術(shù)

人臉識(shí)別技術(shù)

ID:20095736

大?。?.30 MB

頁(yè)數(shù):25頁(yè)

時(shí)間:2018-10-10

人臉識(shí)別技術(shù)_第1頁(yè)
人臉識(shí)別技術(shù)_第2頁(yè)
人臉識(shí)別技術(shù)_第3頁(yè)
人臉識(shí)別技術(shù)_第4頁(yè)
人臉識(shí)別技術(shù)_第5頁(yè)
資源描述:

《人臉識(shí)別技術(shù)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。

1、人臉識(shí)別成云麗目錄人臉的核稀疏表示1.簡(jiǎn)介2.主要特點(diǎn)及技術(shù)流程3.人臉的特征提取方法4.優(yōu)勢(shì)與困難5.主要用途及前景6.主要產(chǎn)品簡(jiǎn)介人臉識(shí)別,是基于人的臉部特征信息進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù)。用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測(cè)和跟蹤人臉,進(jìn)而對(duì)檢測(cè)到的人臉進(jìn)行臉部的一系列相關(guān)技術(shù),通常也叫做人像識(shí)別、面部識(shí)別。簡(jiǎn)介人臉識(shí)別系統(tǒng)的研究始于20世紀(jì)60年代,80年代后隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級(jí)的應(yīng)用階段則在90年后期,并且以美國(guó)、德國(guó)和日本的技術(shù)實(shí)現(xiàn)為主;人臉識(shí)別系統(tǒng)成功的關(guān)鍵在于是否擁有尖端

2、的核心算法,并使識(shí)別結(jié)果具有實(shí)用化的識(shí)別率和識(shí)別速度;“人臉識(shí)別系統(tǒng)”集成了人工智能、機(jī)器識(shí)別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),同時(shí)需結(jié)合中間值處理的理論與實(shí)現(xiàn),是生物特征識(shí)別的最新應(yīng)用,其核心技術(shù)的實(shí)現(xiàn),展現(xiàn)了弱人工智能向強(qiáng)人工智能的轉(zhuǎn)化。主要特點(diǎn)及技術(shù)流傳統(tǒng)的人臉識(shí)別技術(shù)主要是基于可見光圖像的人臉識(shí)別,這也是人們熟悉的識(shí)別方式,已有30多年的研發(fā)歷史。但這種方式有著難以克服的缺陷,尤其在環(huán)境光照發(fā)生變化時(shí),識(shí)別效果會(huì)急劇下降,無(wú)法滿足實(shí)際系統(tǒng)的需要。解決光照問(wèn)題的方案有三維圖像人臉識(shí)別,和熱成像人臉識(shí)別。但這兩種技術(shù)還遠(yuǎn)不成

3、熟,識(shí)別效果不盡人意。主要特點(diǎn)及技術(shù)流迅速發(fā)展起來(lái)的一種解決方案是基于主動(dòng)近紅外圖像的多光源人臉識(shí)別技術(shù)。它可以克服光線變化的影響,已經(jīng)取得了卓越的識(shí)別性能,在精度、穩(wěn)定性和速度方面的整體系統(tǒng)性能超過(guò)三維圖像人臉識(shí)別。這項(xiàng)技術(shù)在近兩三年發(fā)展迅速,使人臉識(shí)別技術(shù)逐漸走向?qū)嵱没V饕攸c(diǎn)及技術(shù)流人臉與人體的其它生物特征(指紋、虹膜等)一樣與生俱來(lái),它的唯一性和不易被復(fù)制的良好特性為身份鑒別提供了必要的前提,與其它類型的生物識(shí)別比較人臉識(shí)別具有如下特點(diǎn):1.非強(qiáng)制性2.非接觸性3.并發(fā)性主要特點(diǎn)及技術(shù)流人臉識(shí)別系統(tǒng)主要包括四個(gè)組成部分:1.人臉圖像采集及檢測(cè)2

4、.人臉圖像預(yù)處理3.人臉圖像特征提取4.匹配與識(shí)別人臉圖像采集及檢測(cè)不同的人臉圖像都能通過(guò)攝像鏡頭采集下來(lái),比如靜態(tài)圖像、動(dòng)態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會(huì)自動(dòng)搜索并拍攝用戶的人臉圖像。人臉圖像采集及檢測(cè)主流的人臉檢測(cè)方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來(lái)分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。人臉檢測(cè)過(guò)程中使用Adaboost算法挑選出一些最能代表人臉的矩形特征(弱分類器),按照加權(quán)投票的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類

5、器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級(jí)聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測(cè)速度。人臉圖像預(yù)處理對(duì)于人臉的圖像預(yù)處理是基于人臉檢測(cè)結(jié)果,對(duì)圖像進(jìn)行處理并最終服務(wù)于特征提取的過(guò)程。系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機(jī)干擾,往往不能直接使用,必須在圖像處理的早期階段對(duì)它進(jìn)行灰度校正、噪聲過(guò)濾等圖像預(yù)處理。對(duì)于人臉圖像而言,其預(yù)處理過(guò)程主要包括人臉圖像的光線補(bǔ)償、灰度變換、小波變換、直方圖均衡化、歸一化、幾何校正、濾波以及銳化等。人臉圖像特征提取人臉識(shí)別系統(tǒng)可使用的特征通常分為視覺特征、像素統(tǒng)計(jì)特征、人臉圖像變換系數(shù)特征、人臉圖像代數(shù)特征等

6、。人臉特征提取的方法歸納起來(lái)分為兩大類:一種是基于知識(shí)的表征方法;另外一種是基于代數(shù)特征或統(tǒng)計(jì)學(xué)習(xí)的表征方法?;谥R(shí)的表征方法主要是根據(jù)人臉器官的形狀描述以及他們之間的距離特性來(lái)獲得有助于人臉?lè)诸惖奶卣鲾?shù)據(jù),其特征分量通常包括特征點(diǎn)間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構(gòu)成,對(duì)這些局部和它們之間結(jié)構(gòu)關(guān)系的幾何描述,可作為識(shí)別人臉的重要特征,這些特征被稱為幾何特征?;谥R(shí)的人臉表征主要包括基于幾何特征的方法和模板匹配法。人臉圖像匹配與識(shí)別提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫(kù)中存儲(chǔ)的特征模板進(jìn)行搜索匹配,通過(guò)設(shè)定一個(gè)閾值,當(dāng)相似度超過(guò)這

7、一閾值,則把匹配得到的結(jié)果輸出。人臉識(shí)別就是將待識(shí)別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對(duì)人臉的身份信息進(jìn)行判斷。這一過(guò)程又分為兩類:一類是確認(rèn),是一對(duì)一進(jìn)行圖像比較的過(guò)程。一類是辨認(rèn),是一對(duì)多進(jìn)行圖像匹配對(duì)比的過(guò)程。人臉圖像特征提取方法特征提取的效果直接關(guān)系到人臉識(shí)別率,因而特征提取應(yīng)保證提取的人臉特征最具有代表性、包含信息量大、冗余量小,同時(shí),能有一定的魯棒性。線性法:1主成分分析法----獨(dú)立成分分析法2奇異值分解法3線性判別分析法4基于偶對(duì)稱分析的特征提取法非線性法:基于核技術(shù)的特征抽取基本思想就是通過(guò)適當(dāng)?shù)姆蔷€性映射將線性不可

8、分的原始樣本變換到某一線性可分的高維特征空間F,這種非線性映射是通過(guò)定義適當(dāng)?shù)膬?nèi)

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。