資源描述:
《基于遺傳神經(jīng)網(wǎng)絡的汽車故障率預測》由會員上傳分享,免費在線閱讀,更多相關內容在工程資料-天天文庫。
1、基于遺傳神經(jīng)網(wǎng)絡的汽車故障率預測上海交通大學碩士學位論文基于遺傳神經(jīng)網(wǎng)絡的汽車故障率預測姓名:楊婷中請學位級別:碩士專業(yè):控制理論與控制工程指導教師:楊根科20080101上海交通大學碩士學位論文i基丁遺傳神經(jīng)網(wǎng)絡的汽車故障率預測摘要汽車在使用過程屮總會有故障出現(xiàn),對于汽車生產(chǎn)商來說,了解到汽車在一定行駛條件下的故障率,可以減少相應的時間成本和庫存成本。有鑒于此,本文首先通過對汽車整體性能的分析,找出可能引起整體性能指標降低而導致汽車故障的因素:汽車不同零件的易損度不同,零件本身質量差異,汽車維修頻率,汽車消耗品種類,汽車行駛環(huán)境,駕駛因素,行駛距離等,開拓了汽車故障模型建
2、模的新途徑;并對每個不同的故障因素影響導致汽車故障的權重進行了分析評估,得出汽車故障率的控制模型。其次,本文采用了GA-BP神經(jīng)網(wǎng)絡處理問題。在描述了傳統(tǒng)BP網(wǎng)絡的基本模型的基礎上,介紹了用于BP網(wǎng)絡中的常見的幾種改進算法:附加動量和學習率自適應調整的改進BP算法BPX、Levenberg-Marquardt優(yōu)化方法LM>Bayes規(guī)范化BP算法。并利用遺傳算法對神經(jīng)網(wǎng)絡的權值和閾值進行優(yōu)化,在MATLAB上分別對這幾種算法對模型進行了訓練,利用神經(jīng)網(wǎng)絡的泛化能力,得到我們所需要的預測數(shù)據(jù)。關鍵字:BP神經(jīng)網(wǎng)絡、遺傳算法、優(yōu)化、汽車故障率、預測1上海交通大學碩士學位論文iF
3、ORECASTTHECARFAILUREBASEDONBPNEURALNETWORKABSTRACTTngeneral,theautomobilehasthebreakdownappearanceintheuseprocess.Regardingtheautomobileproducer,itwouldreducethecorrespondingtimecostandinventorycostafterknowingtheautomobilecondition.failurerateundercertaintravelAstothis,firstly,throughthea
4、utomobileoverallperformanceanalysis,thearticlefindsthepossiblecausestoreducetheautomobilebreakdown,suchastheautomobileeachinsiallmentbuckle,thecomponentsqualitycliffcrcnccs,theautomobileservicefrequency,theautomobilefueloil,theautomobiletravelenvironment,thedrivingtechnologyandthedrivingme
5、thod,thetravelcourseandsoonandetc.Allofthesehavedevelopedtheautomobilebreakdownmodelinthenewway,andanalysistheweighofthedifferentbreakdownfactorsinfluenee,thentheautomobilefailureratecontrolmodelhasbeengot.Next,thisarticlehasusedtheGA-BPneuralnetworktosolvethequestion.Onthefoundationofthet
6、raditionalBPnetworkbasicmodel,itintroducestheseveralcommonkindsofimprovementalgorithmintheBPnetwork:Additionalmomcntumandlearningrateauto-adaptcd■1上海交通大學碩士學位論文iiadjustmentimprovementBPalgorithmBPX、Levenberg-MarquardtoptimizedalgorithmLM,BayesstanclarclizcclBPalgorithm,andcarriesontheoptimi
7、zationontheneuralnetworkweightandbiasusingthegeneticalgorithm.IthasseparatelycarriedonthetrainingmodelbyMATLABonthebasisofthesealgorithms,andforecastthedatawhichweneedthroughregressionabilityusingtheneuralnetwork.KEYWORDS:Back-PropagationNeuralNetwork,GeneticA