Artificial Neural Networks Improve the Accuracy of Cancer Survival Prediction

Artificial Neural Networks Improve the Accuracy of Cancer Survival Prediction

ID:39153635

大小:108.20 KB

頁(yè)數(shù):6頁(yè)

時(shí)間:2019-06-25

Artificial Neural Networks Improve the Accuracy of Cancer Survival Prediction_第1頁(yè)
Artificial Neural Networks Improve the Accuracy of Cancer Survival Prediction_第2頁(yè)
Artificial Neural Networks Improve the Accuracy of Cancer Survival Prediction_第3頁(yè)
Artificial Neural Networks Improve the Accuracy of Cancer Survival Prediction_第4頁(yè)
Artificial Neural Networks Improve the Accuracy of Cancer Survival Prediction_第5頁(yè)
資源描述:

《Artificial Neural Networks Improve the Accuracy of Cancer Survival Prediction》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、857Arti?cialNeuralNetworksImprovetheAccuracyofCancerSurvivalPredictionHarryB.Burke,M.D.,Ph.D.1BACKGROUND.TheTNMstagingsystemoriginatedasaresponsetotheneedforPhilipH.Goodman,M.D.,M.S.2anaccurate,consistent,universalcanceroutcomepredictionsystem.SincetheDavidB.Rosen,Ph.

2、D.1TNMstagingsystemwasintroducedinthe1950s,newprognosticfactorshaveDonaldE.Henson,M.D.3beenidenti?edandnewmethodsforintegratingprognosticfactorshavebeen4developed.ThisstudycomparesthepredictionaccuracyoftheTNMstagingsystemJohnN.Weinstein,M.D.,Ph.D.FrankE.Harrell,Jr.,5

3、withthatofarti?cialneuralnetworkstatisticalmodels.Ph.D.6METHODS.For5-yearsurvivalofpatientswithbreastorcolorectalcarcinoma,JeffreyR.Marks,Ph.D.7theauthorscomparedtheTNMstagingsystem'spredictiveaccuracywiththatofDavidP.Winchester,M.D.8arti?cialneuralnetworks(ANN).Thear

4、eaunderthereceiveroperatingcharacteris-DavidG.Bostwick,M.D.ticcurve,asappliedtoanindependentvalidationdataset,wasthemeasureofaccuracy.1BioinformaticsandHealthServicesResearch,RESULTS.FortheAmericanCollegeofSurgeons'PatientCareEvaluation(PCE)DepartmentofMedicine,NewYor

5、kMedicalCol-dataset,usingonlytheTNMvariables(tumorsize,numberofpositiveregionallege,Valhalla,NewYork.lymphnodes,anddistantmetastasis),thearti?cialneuralnetwork'spredictions2DepartmentofMedicine,UniversityofNevadaofthe5-yearsurvivalofpatientswithbreastcarcinomaweresign

6、i?cantlymoreSchoolofMedicine,Reno,Nevada.accuratethanthoseoftheTNMstagingsystem(TNM,0.720;ANN,0.770;P3DivisionofCancerPreventionandControl,Na-0.001).FortheNationalCancerInstitute'sSurveillance,Epidemiology,andEndtionalCancerInstitute,Bethesda,Maryland.Resultsbreastcar

7、cinomadataset,usingonlytheTNMvariables,thearti?cial4neuralnetwork'spredictionsof10-yearsurvivalweresigni?cantlymoreaccurateDivisionofCancerTreatment,NationalCancerInstitute,Bethesda,Maryland.thanthoseoftheTNMstagingsystem(TNM,0.692;ANN,0.730;P0.01).ForthePCEcolorectal

8、dataset,usingonlytheTNMvariables,thearti?cialneural5DepartmentofHealthEvaluationSciences,network'spredictionsofthe5-yearsurv

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。