Knowledge Representation for Stochastic Decision Processes

Knowledge Representation for Stochastic Decision Processes

ID:40390033

大?。?.56 MB

頁數(shù):42頁

時間:2019-08-01

Knowledge Representation for Stochastic Decision Processes_第1頁
Knowledge Representation for Stochastic Decision Processes_第2頁
Knowledge Representation for Stochastic Decision Processes_第3頁
Knowledge Representation for Stochastic Decision Processes_第4頁
Knowledge Representation for Stochastic Decision Processes_第5頁
資源描述:

《Knowledge Representation for Stochastic Decision Processes》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、KnowledgeRepresentationforStochasticDecisionProcessesCraigBoutilierUept.ofConiputerScience,UniversityofBritishColumbia,Vancouver,BCV6T124,CAKADAcebly@cs.ubc.cuAbstract.Reasoningaboutstochasticdynamicalsystemsandplanningunderuncertaintyhascometoplayafundamentalrolei

2、nA1researchandapplications.Therepresentationofsuchsystems,inparticular,ofactionswithstochasticeffects,hasaccordinglybeengivenincreasingat-tentioninrecentyears.Inthisarticle,wesurveyanumberoftechniquesforrepresentingstochasticprocessesandactionswithstochasticeffects

3、usingdyriilrriicBayesiannetworksandinfluencediagrams,andbrieflydescribehowt,hesesupporteffectiveinferencefortaskssuchasmoni-toring,forecasting,explanationanddecisionmaking.Wealsocomparethesetechniquestoseveralact,ionrepresentationsadoptedintheclassicalreasoningabou

4、tactionandplanningcommunities,describinghowtra-dit,ionalproblemssuchastheframeandramificationproblemsaredealtwithiristochasticsettings,andhowthesesolutionscomparetorecentapproachestothisproblemintheclassical(deterministic)literature.Wearguethatwhilestochasticdynami

5、csintroducecertaincomplicationswhenitcomestosuchissues,forthemostpart,intuitionsunderlyingclassicalmodelscanbeextendedtothestochasticsetting.1IntroductionWithinartificialintelligence,increasingattcntionhasbeenpaidt.otheproblemsofthemonitoring,forecastingandcontrolo

6、fcomplexstochasticprocesses.WhileclassicalplanninghashistoricallybeentheprimefocusofthoseinA1interestedincontrollingdynamicalsystems,researchershavecometorea.lizethatmany(ormost)realisticproblemscannotbeadequatelymodeledusingtheassumptionsofclassicalplanning.Specif

7、ically,oneisgenerallyforcedtoconsideractionswithnondet,erministicorstochasticeffects,processesinwhichexogenouseventsoccur,incompleteoruncertainknowledgeofthesystemstate,impreciseobservationsofthesystemstate,problemswithill-definedgoalsormultiple,possiblyconflict-in

8、gobjectives,andon-going(possiblynonterrninating)processeswithindefinitehorizon.St,ochasticanddecisiontheoret,icplanning[17,19,51attemptstoincorpo

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。