資源描述:
《淺談提高小學(xué)數(shù)學(xué)課堂效率的途徑的論文》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、淺談提高小學(xué)數(shù)學(xué)課堂效率的途徑的論文1 一例多說,養(yǎng)成解題的思維習(xí)慣 語言和思維密切相關(guān),語言是思維的外殼,也是思維的工具。語言可以促進(jìn)思維的發(fā)展,反過來,良好的邏輯思維,又會引導(dǎo)出準(zhǔn)確、流暢而又周密的語言。在教學(xué)實踐中,不少老師只強調(diào)“怎樣解題”,而忽視了“如何說題(說題意、說思路、說解法、說檢驗等)”??此七@是重視解題,實則這是忽略解題能力的培養(yǎng)。由于缺少對解題的思維習(xí)慣、思維品質(zhì)的培養(yǎng),學(xué)生的解題能力,只囿于題海戰(zhàn)術(shù)、死記硬背的機械記憶中,這與當(dāng)前的素質(zhì)教育格格不入。 另外,從學(xué)生解題的實際
2、表現(xiàn)看,學(xué)生解題的錯誤,一般是由于缺乏細(xì)致、周密的邏輯思考和分析。特別是當(dāng)作業(yè)量稍多時,這種表現(xiàn)更為突出。從教師教學(xué)實際看,教師為了強化對學(xué)生解題思路的訓(xùn)練,往往要求學(xué)生在作業(yè)本上寫出分析思路圖,或畫出線段圖。但這項工作,對于小學(xué)生來說,一方面難度比較大,另一方面因費時多,學(xué)生持久性不夠,往往收效并不大。筆者認(rèn)為加強課堂教學(xué)中的“說題訓(xùn)練”,即采用“順逆說”、“轉(zhuǎn)換說”和“辯論說”等幾種訓(xùn)練形式,養(yǎng)成學(xué)生解題的思維習(xí)慣,從而培養(yǎng)學(xué)生的解題能力?! ?.1 順逆說 每解答一道應(yīng)用題時,不必急于去求答案
3、,而要讓學(xué)生分別進(jìn)行順?biāo)伎己湍嫠伎?,把解題思路及計劃說出來。再把說出的意義與原題對照,看看是否一致?如不一致,則要重新分析,認(rèn)真檢查,直到說出的意義與原題一致為止?! ?.2 轉(zhuǎn)換說 對于題中某一個條件或問題,要引導(dǎo)學(xué)生善于運用轉(zhuǎn)換的思想,說成與其內(nèi)容等價的另一種表達(dá)形式,使學(xué)生加深理解,從而豐富解題方法,提高解題能力。.這樣,學(xué)生解題思路就會開闊,方法就會靈活多樣,從而化難為易。 1.3 辯論說 鼓勵學(xué)生有理有據(jù)的自由爭辯,有利于培養(yǎng)學(xué)生獨立思考和勇于發(fā)表不同見解的思維品質(zhì),尋找到獨特的解題方
4、法。有一次,一位老師教學(xué)解答圓面積一題時,老師問學(xué)生:“計算圓面積要知道什么條件才能進(jìn)行計算?”多數(shù)學(xué)生回答“必須知道半徑,才能求出圓面積。”但有一個學(xué)生舉手表示不同意,認(rèn)為“知道周長或直徑,同樣可以計算圓面積?!睂@個學(xué)生的回答,老師一方面作了肯定,另一方面要他和持不同意見的同學(xué)進(jìn)行辯論。這樣,雙方經(jīng)過幾輪辯論后,使這位學(xué)生認(rèn)識到“已知周長或直徑,最終還是要先求出半徑”的道理。另外,也使大部分同學(xué)明白了“不光只有知道半徑,才能計算圓面積”的道理?! ? 多向探索,培養(yǎng)解題的靈活性 求異思維是一種創(chuàng)
5、造性思維。它要求學(xué)生憑借自己的知識水平能力,對某一問題從不同的角度,不同的方位去思考,創(chuàng)造性地解決問題。而小學(xué)生的思維是以具體形象思維為主,容易產(chǎn)生消極的思維定勢,造成一些機械思維模式,干擾解題的準(zhǔn)確性和靈活性。有的學(xué)生常常將題中的兩個數(shù)據(jù)隨意連接,而忽視其邏輯意義。為了排除學(xué)生這種消極思維定勢的干擾,在解題中,要努力創(chuàng)造條件,引導(dǎo)學(xué)生從各個角度去分析思考問題,發(fā)展學(xué)生的求異思維,使其創(chuàng)造性地解決問題。通常運用的方法有“一題多問”、“一題多解”和“一題多變”?! ?.1 一題多問 同一道題,同樣的條
6、件,從不同的角度出發(fā),可以提出不同的問題。這樣,可以起到“以一當(dāng)十”的教學(xué)效果。象同一道題,老師還可以從分析上多提問,從解法上多提問,從檢驗上多提問,進(jìn)行多問啟思訓(xùn)練,培養(yǎng)學(xué)習(xí)思維的靈活性?! ?.2 一題多解 在解題時,要經(jīng)常注意引導(dǎo)學(xué)生從不同的方面,探求解題途徑,以求最佳解法。 例如“某村計劃修一條長150米的路,前3天完成了計劃的20%,照這樣計算,完成這條路還需多少天?”首先老師要學(xué)生用多種方法解。在學(xué)生沒有學(xué)習(xí)工程問題時,解法一般集中在以下三種上:①(150-150×20%)÷(150×
7、20%÷3)=12(天);②150÷(150×20%÷3)-3=12(天);③150×(1-20%)÷(150×20%÷3)=12(天)。針對這些解法,老師要善于引導(dǎo)學(xué)生比較三種方法的異同點,總結(jié)出“三種方法中都運用了全程150米”這一條件的共性。針對這一共性,老師可打破思維定勢,啟迪學(xué)生的新思維:“假如把150米當(dāng)作一條路(用1來表示),還可以怎樣解答?”這一點撥,學(xué)生很容易發(fā)現(xiàn)如下解法:④3×[(1-20%)÷20%]=12(天);⑤1÷(20%÷3)-3=12(天);⑥3÷20%-3=12(天)
8、。 綜上六種解法,顯然后三種解法(尤其是解法⑥),列式簡潔,想象豐富,充分可以顯示學(xué)生思維的靈活性?! ?.3 一題多變 小學(xué)生解題時,往往受解題動機的影響,因局部感知而干擾整體的認(rèn)識。例如:“某商廈共有6層,每兩層間的板梯長5米,從1樓到6樓共要走多少米?”往往由于“每兩層5米”和“6層”與學(xué)生的解題動機發(fā)生共鳴,忽視了“6層只有5段間距”這一特點,而容易得出“5×6”的錯解。要消除類似的干擾,就必須進(jìn)行一些一題多變的訓(xùn)練?! ⊥ǔ?,教學(xué)中的變條件