introduction to advanced econometrics - …

introduction to advanced econometrics - …

ID:11735856

大?。?87.00 KB

頁數(shù):107頁

時(shí)間:2018-07-13

introduction to advanced econometrics - …_第1頁
introduction to advanced econometrics - …_第2頁
introduction to advanced econometrics - …_第3頁
introduction to advanced econometrics - …_第4頁
introduction to advanced econometrics - …_第5頁
資源描述:

《introduction to advanced econometrics - …》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、TableofContentsLectureOutlines….……………………………………………………………………….2ClassicalLinearRegressionModel……….………………………………………………...2HypothesisTesting…………………………………………………………………………10GeneralLinearRegressionModel...………………………………………………………..15SeeminglyUnrelatedRegressionsModel…..……………………………………………….23Simult

2、aneousEquationsRegressionModel…………………………………………………31BinaryDiscreteChoiceRegressionModels.………………………………………………..44Fixed-EffectsandRandom-EffectsRegressionModelsforPanelData...…………………..54Duration(Survival)ModelsforTimetoEventData………………………………………..65Appendix……………………………………………………………………………………8

3、3StataGuidewithAssignments……………………..………………………………………..84107THECLASSICALLINEARREGRESSIONMODEL107INTRODUCTIONTheclassicallinearregressionmodelisastatisticalmodelthatdescribesadatagenerationprocess.SPECIFICATIONThespecificationoftheclassicallinearregressionmodelisdefinedbythefollowingset

4、ofassumptions.Assumptions1.Thefunctionalformislinearinparameters.Yt=b1Xt1+b2Xt2+…+bkXtk+mt2.Theerrortermhasmeanzero.E(mt)=0fort=1,2,…,T3.Theerrortermhasconstantvariance.Var(mt)=E(mt2)=s2fort=1,2,…,T4.Theerrorsareuncorrelated.Cov(mt,ms)=E(mt·ms)=0forallt1s5.Theerrortermhasanormaldistr

5、ibution.mt~Nfort=1,2,…,T6.Theerrortermisuncorrelatedwitheachexplanatoryvariable.Cov(mt,Xti)=E(mt·Xti)=0fort=1,2,…,Tandi=1,2,…,K7.Theexplanatoryvariablesarenonrandomvariables.ClassicalLinearRegressionModelConciselyStatedThesampleofTmultivariateobservations(Yt,Xt1,Xt2,…,Xtk)aregenerate

6、dbyaprocessdescribedasfollows.Yt=b1Xt1+b2Xt2+…+bkXtk+mtmt~N(0,s2)fort=1,2,…,Toralternatively,Yt~N(b1Xt1+b2Xt2+…+bkXtk,s2)fort=1,2,…,TClassicalLinearRegressionModelinMatrixFormatThesampleofTmultivariateobservations(Yt,Xt1,Xt2,…,Xtk)aregeneratedbyaprocessdescribedbythefollowingsystemof

7、Tequations.Observation1Y1=b1X11+b2X12+…+bkX1k+m1Observation2Y2=b1X21+b2X22+…+bkX2k+m2………………………………………ObservationTYT=b1XT1+b2XT2+…+bkXTk+mTNotethefollowing.1)Thereisoneequationforeachmultivariateobservation.2)Theparametersareconstants,andthereforehavethesamevalueforeachmultivariateobse

8、rvation.3)Th

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。