幾類求解分?jǐn)?shù)階微分方程runge-kutta方法

幾類求解分?jǐn)?shù)階微分方程runge-kutta方法

ID:12411986

大小:3.68 MB

頁(yè)數(shù):28頁(yè)

時(shí)間:2018-07-16

幾類求解分?jǐn)?shù)階微分方程runge-kutta方法_第1頁(yè)
幾類求解分?jǐn)?shù)階微分方程runge-kutta方法_第2頁(yè)
幾類求解分?jǐn)?shù)階微分方程runge-kutta方法_第3頁(yè)
幾類求解分?jǐn)?shù)階微分方程runge-kutta方法_第4頁(yè)
幾類求解分?jǐn)?shù)階微分方程runge-kutta方法_第5頁(yè)
資源描述:

《幾類求解分?jǐn)?shù)階微分方程runge-kutta方法》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。

1、Runge-kutta2010–5–27SeveralKindsofRunge-KuttaMethodsforFractionalDi?erentialEquationsCandidateSupervisorCollegeProgramSpecialityDegreeUniversityDateYunfeiLiProfessorXuenianCaoMathematicsandComputationalScienceComputationalMathematicsNumericalSolutionofFractionalDi?erential

2、EquationsMasterofScienceXiangtanUniversityApril18th,2010,,,,,L-Runge-KuttaRiemann-Liouville,,RadauIA,,L-.Runge-Kutta.Runge-KuttaIL-Runge-KuttaLobattaIIICAbstractBasedonahighorderapproximationofL-stableRunge-KuttamethodsforRiemann-Liouvillefractionaldirivatives,aclas

3、sofhigh-orderL-stableRunge-Kuttamethodsforsolvingthenonlinearfractionaldi?erentialequationsiscon-structedinthispaper.Consistency,convergence,andstabilityanalysisofthesemethodsaregiven.Innumericalexperiments,fractionalRadauIAmethodsandLobattoIIICmethodsandsingly-diagonalimpl

4、icitRunge-Kuttamethodscom-biningtheshortmemoryprinciplearechosen.Thesemethodsaree?cientforsolvingnonlinearfractionaldi?erentialequations.Keywords:Fractionaldi?erentialequation;L-stableRunge-Kuttamethod;consistency;convergence;stability;shortmemoryprincipleII................

5、................................1L-Runge-Kutta.................2§2.1§2.2§2.3§2.4...........................................4..........................................4...........................................6..........................................8.................

6、..........................11...................................................22.....................................................23.........................................................25III.,[1]Abel(Goren?oVessela,1991)[2],(RossikhinShitikova,1997)[3],(Benson

7、,WheatcraftMeerschert,2000a,b)[4],.(Wyss,2000)[5],,,,.,,.,.K.Diethelm,N.J.FordA.D.Freed[6]-.,,[7],[9][10].Lubich[8]Runge-KuttaAbel-Volterra.Lubich,[1],[11]Runge–Kutta,[13].RadauIIA.,,[12],,,.,.[14]Riemann-Liouville.,FordSimpson[15].,L-

8、L-Runge-KuttaRunge-Kutta.,(,L-L-RK),Runge-Kutta,LobattoIIICRadauIA,,Run

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。