資源描述:
《hilbert space methods for partial differential equations - r. showalter》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、HilbertSpaceMethodsforPartialDierentialEquationsR.E.ShowalteriPrefaceThisbookisanoutgrowthofacoursewhichwehavegivenalmostpe-riodicallyoverthelasteightyears.Itisaddressedtobeginninggraduatestudentsofmathematics,engineering,andthephysicalsciences.Thus,wehav
2、eattemptedtopresentitwhilepresupposingaminimalbackground:thereaderisassumedtohavesomeprioracquaintancewiththeconceptsoflin-2ear"andcontinuous"andalsotobelieveLiscomplete.AnundergraduatemathematicstrainingthroughLebesgueintegrationisanidealbackgroundbutwe
3、darenotassumeitwithoutturningawaymanyofourbeststudents.Theformalprerequisiteconsistsofagoodadvancedcalculuscourseandamotivationtostudypartialdierentialequations.Aproblemiscalledwell-posedifforeachsetofdatathereexistsexactlyonesolutionandthisdependenceofth
4、esolutiononthedataiscontinuous.Tomakethisprecisewemustindicatethespacefromwhichthesolutionisobtained,thespacefromwhichthedatamaycome,andthecorrespond-ingnotionofcontinuity.Ourgoalinthisbookistoshowthatvarioustypesofproblemsarewell-posed.Theseincludeboundar
5、yvalueproblemsfor(stationary)ellipticpartialdierentialequationsandinitial-boundaryvalueproblemsfor(time-dependent)equationsofparabolic,hyperbolic,andpseudo-parabolictypes.Also,weconsidersomenonlinearellipticboundaryvalueproblems,variationaloruni-lateralpr
6、oblems,andsomemethodsofnumericalapproximationofsolutions.Webrie
ydescribethecontentsofthevariouschapters.ChapterIpresentsalltheelementaryHilbertspacetheorythatisneededforthebook.ThersthalfofChapterIispresentedinaratherbrieffashionandisin-tendedbothasarevi
7、ewforsomereadersandasastudyguideforothers.m0Non-standarditemstonoteherearethespacesC(G),V,andV.ThenrstconsistsofrestrictionstotheclosureofGoffunctionsonRandthelasttwoconsistofconjugate-linearfunctionals.ChapterIIisanintroductiontodistributionsandSobolev
8、spaces.ThelatteraretheHilbertspacesinwhichweshallshowvariousproblemsarewell-posed.Weuseaprimitive(andnon-standard)notionofdistributionwhichisadequateforourpurposes.Ourdistributionsareconjugate-linearandhaveth