資源描述:
《ordinary differential equations and dynamical systems - g. teschl》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫。
1、Ordinarydi?erentialequationsandDynamicalSystemsGeraldTeschlGeraldTeschlInstitutf¨urMathematikStrudlhofgasse4Universit¨atWien1090Wien,AustriaE-mail:Gerald.Teschl@univie.ac.atURL:http://www.mat.univie.ac.at/~gerald/1991Mathematicssubjectclassi?cation.34-
2、01Abstract.Thismanuscriptprovidesanintroductiontoordinarydi?erentialequationsanddynamicalsystems.Westartwithsomesimpleexamplesofexplicitlysolvableequations.Thenweprovethefundamentalresultsconcerningtheinitialvalueproblem:existence,uniqueness,extensibil
3、ity,dependenceoninitialconditions.Furthermoreweconsiderlinearequations,theFloquettheorem,andtheautonomouslinear?ow.ThenweestablishtheFrobeniusmethodforlinearequationsinthecom-plexdomainandinvestigatesSturm–Liouvilletypeboundaryvalueproblemsincludingosc
4、illationtheory.Nextweintroducetheconceptofadynamicalsystemanddiscusssta-bilityincludingthestablemanifoldandtheHartman–Grobmantheoremforbothcontinuousanddiscretesystems.WeprovethePoincar′e–Bendixsontheoremandinvestigateseveralex-amplesofplanarsystemsfro
5、mclassicalmechanics,ecology,andelectricalengineering.Moreover,attractors,Hamiltoniansystems,theKAMtheorem,andperiodicsolutionsarediscussedaswell.Finally,thereisanintroductiontochaos.BeginningwiththebasicsforiteratedintervalmapsandendingwiththeSmale–Bir
6、kho?theoremandtheMelnikovmethodforhomoclinicorbits.Keywordsandphrases.Ordinarydi?erentialequations,dynamicalsystems,Sturm-Liouvilleequations.TypesetbyAMS-LATEXandMakeindex.Version:February18,2004Copyrightc2000-2004byGeraldTeschlContentsPrefaceviiPart1.
7、ClassicaltheoryChapter1.Introduction3§1.1.Newton’sequations3§1.2.Classi?cationofdi?erentialequations5§1.3.Firstorderautonomousequations8§1.4.Findingexplicitsolutions11§1.5.Qualitativeanalysisof?rstorderequations16Chapter2.Initialvalueproblems21§2.1.Fix
8、edpointtheorems21§2.2.Thebasicexistenceanduniquenessresult23§2.3.Dependenceontheinitialcondition26§2.4.Extensibilityofsolutions29§2.5.Euler’smethodandthePeanotheorem32§2.6.Appendix:Volterraintegralequations34Chapter3.Linearequations41§3