correspondences on hyperbolic curves

correspondences on hyperbolic curves

ID:14467579

大小:159.00 KB

頁數(shù):18頁

時間:2018-07-28

correspondences on hyperbolic curves_第1頁
correspondences on hyperbolic curves_第2頁
correspondences on hyperbolic curves_第3頁
correspondences on hyperbolic curves_第4頁
correspondences on hyperbolic curves_第5頁
資源描述:

《correspondences on hyperbolic curves》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫

1、CorrespondencesonHyperbolicCurvesbyShinichiMochizuki§0.IntroductionThepurposeofthispaperistoproveseveraltheoremsconcerningthe?nitenessand,moregenerally,thescarcityofcorrespondencesonhyperboliccurvesincharacteristiczeroandtocommentonthemeaningoftheseresults,especiallyrelativetotheanalogywithabelian

2、varieties.Weconsiderhyperboliccurvesoveranalgebraicallyclosed?eldkofcharacteristiczero.WecalltwosuchcurvesX,YisogenousifthereexistsanonemptyschemeC,togetherwith?nite′etalemorphismsC→X,C→Y.(Werefertosuchapair(C→X,C→Y)asacorrespondencefromXtoY.)Itiseasytoseethattherelationofisogenyisanequivalencerel

3、ationonthesetofisomorphismclassesofhyperboliccurvesoverk.Thenthe?rstmainresultofthispaper(cf.Lemma4.1andTheorem4.2inthetext)isthefollowing:TheoremA.Letkbeanalgebraicallyclosed?eldofcharacteristiczero.LetXbeahyperboliccurveoverk.Let(g,r)beapairofnonnegativeintegerssatisfying2g?2+r>0.Then(uptois

4、omorphism)thereareonly?nitelymanyhyperboliccurvesoverkoftype(g,r)thatareisogenoustoX.Moreover,ifKisanalgebraicallyclosed?eldextensionofk,thenanycurvewhichisisogenoustoXoverKisde?nedoverkandalreadyisogenoustoXoverk.Thisresultis,technicallyspeaking,arathertrivialconsequenceofhighlynontrivialresult

5、sofMargulisandTakeuchi([Marg],[Take]).Moreover,itispossiblethatTheoremAhasbeenknowntomanyexpertsforsometime,butthattheysimplyneverbotheredtowriteitdown.Asfortheauthor,IwasdimlyawareofTheoremAforsometime,withouthavingcheckedthedetailsoftheproofofit,untilIwasaskedexplicitlyaboutthe?nitenessstatedinT

6、heoremAbyProf.FransOortduringmystayatUtrechtUniversityinNovember1996.IwasthenencouragedbyProf.Oorttowritedownthedetails;whencethepresentpaper.Infact,forgeneralcurves,wecansaymore:Indeed,let(Mg,r)kdenotethemodulistackofr-pointedsmooth(proper)curvesofgenusg.Here,thermarkedpointsareunordered.(Notetha

7、tthisdi?ersslightlyfromtheusualconvention.)Thecomplementofthedivisorofmarkedpointsofsuchacurvewillbeahyperboliccurveoftype(g,r).Thus,weshallalsorefer(byslightabuseofterminology)to(Mg,r)kasthemodulistackofhyperbol

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。