資源描述:
《comparison geometry》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、ComparisonGeometryMSRIPublicationsVolume30,1996PrefaceOneofthemainactivitiesduringthe1993{94specialyearindierentialge-ometryatMSRIwasfocusedonthesubjectbaptizedComparisonGeometry"duringtheplanningphaseoftheworkshops.Althoughanamehasbeenlackingforthisbeautifulandmostgeometricb
2、ranchofriemanniangeometry,itshistorycanbetracedbacktothenineteenthcentury.Itdidnottakeroot,however,untilthe1930's,throughtheworkofH.Hopf,Morse{Schoenberg,Myers,andSynge.Therealbreakthroughcameinthe1950'swiththepioneeringworkofRauchandthefoundationalworkofAlexandrov,Toponogovand
3、Bishop.Sincethen,thesimpleideaofcompar-ingthegeometryofanarbitraryriemannianmanifoldwiththegeometriesofconstantcurvaturespaceshasseenatremendousevolution:rstinconjunctionwithMorsetheoryandconvexity,thenwithcriticalpointtheoryfordistancefunctions,andmostrecentlywiththeGromov{Ha
4、usdortopologyonspacesofriemannianmanifolds,andthegeometryofsingularspaces.Asaresult,ourunderstandingofrelationsbetweenthegeometryandtopologyofriemannianmanifoldshasgainedtremendousbreadthandconsistsnolongerofjustashortstringofpearls.Attheoutsetitisworthmentioningthatthe?avoran
5、dcharacterofproblemsandtechniquesrelatedtoupperratherthanlowercurvatureboundstoalargeextentareremarkablydierent.Thisvolumeisanup-to-datere?ectionoftheabovementioneddevelopmentregardingspaceswithlower,ortwo-sided,curva-turebounds.Thesubjectofmanifoldswithnegativeornonpositivecu
6、rvature,withitsramicationstodynamicsandnumbertheory,isnotrepresentedhere.Thecontentofthevolumere?ectssomeofthemostexcitingactivitiesonComparisonGeometryduringtheyear,andespeciallyoftheworkshopdevotedtothesubject.Asaconsequence,thebookfeaturessurveyarticles(byAbreschandMeyer,An
7、derson,Colding,Greene,Otsu,Petersen,andZhu)andresearcharticles(byPerelmanandPetrunin).Eachofthesurveyarticlesstemsfromrecentinterestingdevelopmentsconcerningeitherclassicalormorerecentim-portantproblemsandtwoofthemarelecturenotesfromone-quartercoursesxixiiPREFACEtaughtbytheauth
8、ors.Completeproofsareoftenprovided,andinonecaseanewuni