佩雷爾曼 龐加萊猜想3

佩雷爾曼 龐加萊猜想3

ID:14688722

大?。?21.02 KB

頁(yè)數(shù):7頁(yè)

時(shí)間:2018-07-29

佩雷爾曼 龐加萊猜想3_第1頁(yè)
佩雷爾曼 龐加萊猜想3_第2頁(yè)
佩雷爾曼 龐加萊猜想3_第3頁(yè)
佩雷爾曼 龐加萊猜想3_第4頁(yè)
佩雷爾曼 龐加萊猜想3_第5頁(yè)
資源描述:

《佩雷爾曼 龐加萊猜想3》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)

1、FiniteextinctiontimeforthesolutionstotheRicci?owoncertainthree-manifoldsGrishaPerelman?February1,2008InourpreviouspaperweconstructedcompletesolutionstotheRicci?owwithsurgeryforarbitraryinitialriemannianmetricona(closed,oriented)three-manifold[P,6.1],andusedth

2、ebehaviorofsuchsolutionstoclassifythree-manifoldsintothreetypes[P,8.2].Inparticular,the?rsttypeconsistedofthosemanifolds,whoseprimefactorsaredi?eomorphiccopiesofsphericalspaceformsandS2×S1;theywerecharacterizedbythepropertythattheyadmitmetrics,thatgiverisetos

3、olutionstotheRicci?owwithsurgery,whichbecomeextinctin?nitetime.Whilethisclassi?cationwassu?cienttoanswertopologicalques-tions,ananalyticalquestionofsigni?cantindependentinterestremainedopen,namely,whetherthesolutionbecomesextinctin?nitetimeforeveryinitialmetr

4、iconamanifoldofthistype.Inthisnoteweprovethatthisisindeedthecase.Ourargument(incon-junctionwith[P,§1-5])alsogivesadirectproofofthesocalled”elliptizationconjecture”.Itturnsoutthatitdoesnotrequireanysubstantiallynewideas:weuseonlyaversionoftheleastareadiskargum

5、entfrom[H,§11]andaregu-larizationofthecurveshortening?owfrom[A-G].1Finitetimeextinction1.1Theorem.LetMbeaclosedorientedthree-manifold,whoseprimedecom-positioncontainsnoasphericalfactors.ThenforanyinitialmetriconMthesolutiontotheRicci?owwithsurgerybecomesextin

6、ctin?nitetime.arXiv:math/0307245v1[math.DG]17Jul2003ProofforirreducibleM.LetΛMdenotethespaceofallcontractibleloopsinC1(S1→M).GivenariemannianmetricgonMandc∈ΛM,de?neA(c,g)tobethein?mumoftheareasofalllipschitzmapsfromD2toM,whoserestrictionto?D2=S1isc.Forafamily

7、Γ?ΛMletA(Γ,g)bethesupremumofA(c,g)overallc∈Γ.Finally,foranontrivialhomotopyclassα∈π?(ΛM,M)letA(α,g)bethein?mumofA(Γ,g)overallΓ∈α.SinceMisnotaspherical,itfollowsfromaclassical(andelementary)resultofSerrethatsuchanontrivialhomotopyclassexists.?St.Petersburgbran

8、chofSteklovMathematicalInstitute,Fontanka27,St.Petersburg191023,Russia.Email:perelman@pdmi.ras.ruorperelman@math.sunysb.edu11.2Lemma.(cf.[H,§11])IfgtisasmoothsolutiontotheRicci?ow,thenfor

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。