資源描述:
《佩雷爾曼 龐加萊猜想3》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、FiniteextinctiontimeforthesolutionstotheRicci?owoncertainthree-manifoldsGrishaPerelman?February1,2008InourpreviouspaperweconstructedcompletesolutionstotheRicci?owwithsurgeryforarbitraryinitialriemannianmetricona(closed,oriented)three-manifold[P,6.1],andusedth
2、ebehaviorofsuchsolutionstoclassifythree-manifoldsintothreetypes[P,8.2].Inparticular,the?rsttypeconsistedofthosemanifolds,whoseprimefactorsaredi?eomorphiccopiesofsphericalspaceformsandS2×S1;theywerecharacterizedbythepropertythattheyadmitmetrics,thatgiverisetos
3、olutionstotheRicci?owwithsurgery,whichbecomeextinctin?nitetime.Whilethisclassi?cationwassu?cienttoanswertopologicalques-tions,ananalyticalquestionofsigni?cantindependentinterestremainedopen,namely,whetherthesolutionbecomesextinctin?nitetimeforeveryinitialmetr
4、iconamanifoldofthistype.Inthisnoteweprovethatthisisindeedthecase.Ourargument(incon-junctionwith[P,§1-5])alsogivesadirectproofofthesocalled”elliptizationconjecture”.Itturnsoutthatitdoesnotrequireanysubstantiallynewideas:weuseonlyaversionoftheleastareadiskargum
5、entfrom[H,§11]andaregu-larizationofthecurveshortening?owfrom[A-G].1Finitetimeextinction1.1Theorem.LetMbeaclosedorientedthree-manifold,whoseprimedecom-positioncontainsnoasphericalfactors.ThenforanyinitialmetriconMthesolutiontotheRicci?owwithsurgerybecomesextin
6、ctin?nitetime.arXiv:math/0307245v1[math.DG]17Jul2003ProofforirreducibleM.LetΛMdenotethespaceofallcontractibleloopsinC1(S1→M).GivenariemannianmetricgonMandc∈ΛM,de?neA(c,g)tobethein?mumoftheareasofalllipschitzmapsfromD2toM,whoserestrictionto?D2=S1isc.Forafamily
7、Γ?ΛMletA(Γ,g)bethesupremumofA(c,g)overallc∈Γ.Finally,foranontrivialhomotopyclassα∈π?(ΛM,M)letA(α,g)bethein?mumofA(Γ,g)overallΓ∈α.SinceMisnotaspherical,itfollowsfromaclassical(andelementary)resultofSerrethatsuchanontrivialhomotopyclassexists.?St.Petersburgbran
8、chofSteklovMathematicalInstitute,Fontanka27,St.Petersburg191023,Russia.Email:perelman@pdmi.ras.ruorperelman@math.sunysb.edu11.2Lemma.(cf.[H,§11])IfgtisasmoothsolutiontotheRicci?ow,thenfor