a survey of the hodge-arakelov theory of elliptic curves i

a survey of the hodge-arakelov theory of elliptic curves i

ID:15165014

大?。?83.44 KB

頁數(shù):41頁

時間:2018-08-01

a survey of the hodge-arakelov theory of elliptic curves i_第1頁
a survey of the hodge-arakelov theory of elliptic curves i_第2頁
a survey of the hodge-arakelov theory of elliptic curves i_第3頁
a survey of the hodge-arakelov theory of elliptic curves i_第4頁
a survey of the hodge-arakelov theory of elliptic curves i_第5頁
資源描述:

《a survey of the hodge-arakelov theory of elliptic curves i》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、ASurveyoftheHodge-ArakelovTheoryofEllipticCurvesIShinichiMochizukiOctober2000Abstract:ThepurposeofthepresentmanuscriptistogiveasurveyoftheHodge-Arakelovtheoryofellipticcurves(cf.[Mzk1,2])—i.e.,asortof“Hodgetheoryofellipticcurves”analogoustotheclassicalcomplexandp-adicHodgetheories,bu

2、twhichexistsintheglobalarithmeticframeworkofArakelovtheory—asthistheoryex-istedatthetimeoftheworkshopon“GaloisActionsandGeometry”heldattheMathematicalSciencesResearchInstitute(MSRI)atBerkeley,USA,inOctober1999.Sincethen,variousfurtherimportantdevelopmentshaveoccurredinthistheory(cf.[

3、Mzk3,4,5],etc.),butweshallnotdiscussthesedevelopmentsindetailinthepresentmanuscript.Contents:§1.TheDiscretizationofLocalHodgeTheories§1.1.TheMainTheorem§1.2.TechnicalRoots§1.3.ConceptualRoots§1.4.TheArithmeticKodaira-SpencerMorphism§1.5.FutureDirections§2.TheThetaConvolution§2.1.Back

4、ground§2.2.StatementoftheMainTheoremTypesetbyAMS-TEX12SHINICHIMOCHIZUKISection1:TheDiscretizationofLocalHodgeTheories§1.1.TheMainTheoremThefundamentalresultoftheHodge-ArakelovtheoryofellipticcurvesisaComparisonTheorem(cf.TheoremAbelow)forellipticcurves,whichstatesroughlythat:Thespace

5、of“polynomialfunctions”ofdegree(roughly)

6、sticzero(cf.TheoremA).Forellipticcurvesinmixedcharacteristicanddegeneratingellipticcurves,thisstatementmaybemadeprecise(i.e.,therestrictionmapbecomesanisomorphism)ifonemodi?esthe“integralstructure”onthespaceofpolynomialfunctionsinanappropriatefashion(cf.TheoremA).Similarly,inthecaseo

7、fellipticcurvesoverthecomplexnumbers,onecanaskwhetherornotoneobtainsanisometryifoneputsnaturalHermitianmetricsonthespacesinvolved.In[Mzk1],wealsocomputewhatmodi?cationtothesemetricsisnecessarytoobtainanisometry(orsomethingveryclosetoanisometry).Incharacteristiczero,theuniversalextens

8、ionofanellip

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。