資源描述:
《2004-2005學年秋季學期工科數(shù)學分析答案》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、哈爾濱工業(yè)大學2004/2005學年秋季學期姓名:班級:學號:工科數(shù)學分析期末考試試卷(答案)試題卷(A)考試形式(開、閉卷):閉答題時間:150(分鐘)本卷面成績占課程成績70%題號一二三四五六七八卷面總分平時成績課程總成績分數(shù)得分一.選擇題(每題2分,共10分)1.下列敘述中不正確者為(D)(A)如果數(shù)列收斂,那么數(shù)列一定有界。(B)如果,則一定有。(C)在點處可導的充要條件是在點處可微。(D)如果函數(shù)在點處導數(shù)為,則必在該點處取得極值。2.設在[0,1]上則下列不等式正確者為(B)(A)(B)(C)(D)3.若在上可積,則下列敘述中錯誤者為(D)(A)連續(xù)(B)在上可積
2、officiallyestablishedonJuly1,2013,Yibincity,formerlyknownasthebus,integratedoriginalrongzhoubuscompanyinYibincityandMetrobuscompany,formedonlyinYibincityofaState-ownedpublictransportenterprises,thecompanyconsistsofoneortwo,thirdDivision.Integrationofpublictransportservicesisnotyetestablishe
3、d第1頁(共7頁)(C)在上由界(D)在上連續(xù)4.若,則(D)(A)(B)(C)(D)遵守考試紀律注意行為規(guī)范5.(D)(A)(B)(C)(D)得分二.填空題(每題2分,共10分)1.的間斷點為:,其類型為:第一類間斷點。2.的全部漸近線方程為:。3.擺線處的切線方程為:。4.=:1。5.設在上可導,,officiallyestablishedonJuly1,2013,Yibincity,formerlyknownasthebus,integratedoriginalrongzhoubuscompanyinYibincityandMetrobuscompany,formedo
4、nlyinYibincityofaState-ownedpublictransportenterprises,thecompanyconsistsofoneortwo,thirdDivision.Integrationofpublictransportservicesisnotyetestablished第2頁(共7頁)則=:得分三.計算下列各題:(每小題4分,本題滿分20分)1.若,求解:2,則2.,解:,3.解:==4.解:officiallyestablishedonJuly1,2013,Yibincity,formerlyknownasthebus,integrate
5、doriginalrongzhoubuscompanyinYibincityandMetrobuscompany,formedonlyinYibincityofaState-ownedpublictransportenterprises,thecompanyconsistsofoneortwo,thirdDivision.Integrationofpublictransportservicesisnotyetestablished第3頁(共7頁)5.已知,求解:=,所以。故四.解答下列各題:(每小題5分,本題滿分10分)得分1.已知數(shù)列,,求證:收斂,并且證明:1)證有界因為
6、,所以。假設,則。故有界。2)證單調(diào)因為,故為單調(diào)上升數(shù)列。由1)和2)知道收斂。設,由,所以有解得。而且為單調(diào)遞增數(shù)列,所以。故。officiallyestablishedonJuly1,2013,Yibincity,formerlyknownasthebus,integratedoriginalrongzhoubuscompanyinYibincityandMetrobuscompany,formedonlyinYibincityofaState-ownedpublictransportenterprises,thecompanyconsistsofoneortwo,th
7、irdDivision.Integrationofpublictransportservicesisnotyetestablished第4頁(共7頁)2.設,曲線與三條直線所圍平面部分繞x軸旋轉(zhuǎn)成的旋轉(zhuǎn)體的體積為取何值時,最大?解:,由得,。當時,故當時,達到極大值,且為最大值。五:證明下列各題:(1,2題各4分,3,4題各6分,本題滿分20分)得分1.證明方程至少有一個不超過的正根。證明:設,顯然它在上連續(xù)。(i)若,則即為滿足條件的根。(ii)若,則。而,由零點定理知存在,使得。即為滿足條件的根。第