資源描述:
《高考數(shù)學(xué)(理)備考黃金易錯(cuò)點(diǎn)專題 空間平行與垂直(易錯(cuò)練兵)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、2018高考數(shù)學(xué)(理)備考黃金易錯(cuò)點(diǎn)專題12空間平行與垂直(易錯(cuò)練兵)1.已知E,F(xiàn),G,H是空間四點(diǎn),命題甲:E,F(xiàn),G,H四點(diǎn)不共面,命題乙:直線EF和GH不相交,則甲是乙成立的( )A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件解析:若E,F(xiàn),G,H四點(diǎn)不共面,則直線EF和GH肯定不相交,但直線EF和GH不相交,E,F(xiàn),G,H四點(diǎn)可以共面,例如EF∥GH.故選B.答案:B2.設(shè)m,n是不同的直線,α,β,γ是不同的平面,有以下四個(gè)命題:①若α∥β,α∥γ,則β∥γ②若α⊥β,m∥α,則m⊥β③若m⊥α,m∥β,則α⊥β④若m∥n,n?α,則m∥
2、α其中正確命題的序號(hào)是( )A.①③ B.①④C.②③D.②④答案:A3.如圖,在三棱錐P-ABC中,不能證明AP⊥BC的條件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:A中,因?yàn)锳P⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC?平面PBC,所以AP⊥BC,故A正確;C中,因?yàn)槠矫鍮PC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP?平面APC,所以AP⊥BC,故C正確;D中,由A知D正確;B中條件不能判斷出AP⊥BC,故選B.答案:B4.設(shè)m,n是兩條不同的直線,α
3、,β是兩個(gè)不同的平面,給出下列四個(gè)命題:①若m∥n,m⊥β,則n⊥β;②若m∥α,m∥β,則α∥β;③若m∥n,m∥β,則n∥β;④若m⊥α,m⊥β,則α⊥β.其中真命題的個(gè)數(shù)為( )A.1B.2C.3D.45.如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不平行的是( )ABCD解析:B選項(xiàng)中,AB∥MQ,且AB?平面MNQ,MQ?平面MNQ,則AB∥平面MNQ;C選項(xiàng)中,AB∥MQ,且AB?平面MNQ,MQ?平面MNQ,則AB∥平面MNQ;D選項(xiàng)中,AB∥NQ,且AB?平面MNQ,NQ?平面MNQ,
4、則AB∥平面MNQ.故選A.答案:A6.如圖所示,直線PA垂直于⊙O所在的平面,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,點(diǎn)M為線段PB的中點(diǎn).現(xiàn)有結(jié)論:①BC⊥PC;②OM∥平面APC;③點(diǎn)B到平面PAC的距離等于線段BC的長(zhǎng).其中正確的是( )A.①②B.①②③C.①D.②③解析:對(duì)于①,∵PA⊥平面ABC,∴PA⊥BC.∵AB為⊙O的直徑,∴BC⊥AC,又∵PA∩AC=A,∴BC⊥平面PAC,又PC?平面PAC,∴BC⊥PC.對(duì)于②,∵點(diǎn)M為線段PB的中點(diǎn),∴OM∥PA,∵PA?平面PAC,OM?平面PAC,∴OM∥平面PAC.對(duì)于③,由①知BC⊥平面PAC,∴線段BC的
5、長(zhǎng)即是點(diǎn)B到平面PAC的距離,故①②③都正確.答案:B7.已知平面α及直線a,b,則下列說(shuō)法正確的是( )A.若直線a,b與平面α所成角都是30°,則這兩條直線平行B.若直線a,b與平面α所成角都是30°,則這兩條直線不可能垂直C.若直線a,b平行,則這兩條直線中至少有一條與平面α平行D.若直線a,b垂直,則這兩條直線與平面α不可能都垂直解析:對(duì)于A,若直線a,b與平面α所成角都是30°,則這兩條直線平行、相交、異面,故A錯(cuò);對(duì)于B,若直線a,b與平面α所成角都是30°,則這兩條直線可能垂直,如圖,直角三角形ACB的直角頂點(diǎn)C在平面α內(nèi),邊AC、BC可以與平面α都成30°角,
6、故B錯(cuò);C顯然錯(cuò)誤;對(duì)于D,假設(shè)直線a,b與平面α都垂直,則直線a,b平行,與已知矛盾,則假設(shè)不成立,故D正確,故選D.答案:D8.三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1⊥平面ABC,AA1=AB,M,N分別是A1B1,A1C1的中點(diǎn),則BM與AN所成角的余弦值為( )A.B.C.D.解析:取BC的中點(diǎn)O,連接NO,AO,MN,因?yàn)锽1C1綊BC,OB=BC,所以O(shè)B∥B1C1,OB=B1C1,因?yàn)镸,N分別為A1B1,A1C1的中點(diǎn),所以MN∥B1C1,MN=B1C1,所以MN綊OB,所以四邊形MNOB是平行四邊形,所以NO∥MB,所以∠ANO或其補(bǔ)角即
7、為BM與AN所成角,不妨設(shè)AB=2,則有AO=,ON=BM=,AN=,在△ANO中,由余弦定理可得cos∠ANO===.故選C.答案:C9.在《九章算術(shù)》中,將四個(gè)面都是直角三角形的四面體稱為鱉臑,在鱉臑A-BCD中,AB⊥平面BCD,且BD⊥CD,AB=BD=CD,點(diǎn)P在棱AC上運(yùn)動(dòng),設(shè)CP的長(zhǎng)度為x,若△PBD的面積為f(x),則f(x)的圖象大致是( )解析:如圖,作PQ⊥BC于Q,作QR⊥BD于R,連接PR,則PQ∥AB,QR∥CD.設(shè)AB=BD=CD=1,則AC=,=,即PQ=,