資源描述:
《世界著名數(shù)學(xué)難題》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、45563世界著名數(shù)學(xué)難題????20世紀(jì)是數(shù)學(xué)大發(fā)展的一個(gè)世紀(jì)。數(shù)學(xué)的許多重大難題得到完滿解決,如費(fèi)馬大定理的證明,有限單群分類工作的完成等,從而使數(shù)學(xué)的基本理論得到空前發(fā)展?;厥?0世紀(jì)數(shù)學(xué)的發(fā)展,數(shù)學(xué)家們深切感謝20世紀(jì)最偉大的數(shù)學(xué)大師大衛(wèi)·希爾伯特。希爾伯特在1900年8月8日于巴黎召開的第二屆世界數(shù)學(xué)家大會(huì)上的著名演講中提出了23個(gè)數(shù)學(xué)難題。希爾伯特問題在過去百年中激發(fā)數(shù)學(xué)家的智慧,指引數(shù)學(xué)前進(jìn)的方向。知識(shí)薦語:數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門基礎(chǔ)學(xué)科,簡(jiǎn)單地說,是研究數(shù)和形的科學(xué)。在數(shù)學(xué)發(fā)展的歷史上,數(shù)學(xué)們不但證明了諸多經(jīng)典的定理,還把眾多謎題留
2、給后人。這期知識(shí),就讓我們一同走進(jìn)那些著名的數(shù)學(xué)難題。1.四色猜想世界近代三大數(shù)學(xué)難題之一。四色猜想的提出來自英國(guó)。1852年,畢業(yè)于倫敦大學(xué)的弗南西斯.格思里來到一家科研單位搞地圖著色工作時(shí),發(fā)現(xiàn)了一種有趣的現(xiàn)象:“看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國(guó)家著上不同的顏色?!边@個(gè)結(jié)論能不能從數(shù)學(xué)上加以嚴(yán)格證明呢?他和在大學(xué)讀書的弟弟格里斯決心試一試。兄弟二人為證明這一問題而使用的稿紙已經(jīng)堆了一大疊,可是研究工作沒有進(jìn)展。?·四色猜想到底怎么回事?·什么是四色猜想·證明四色猜想的計(jì)算機(jī)是什么名字·哪里有關(guān)于四色猜想的資料·請(qǐng)問世界上那個(gè)四色猜想的內(nèi)容是什么?·2
3、.哥德巴赫猜想哥德巴赫是德國(guó)一位中學(xué)教師,也是一位著名的數(shù)學(xué)家,生于1690年,1725年當(dāng)選為俄國(guó)彼得堡科學(xué)院院士。1742年,哥德巴赫在教學(xué)中發(fā)現(xiàn),每個(gè)不小于6的偶數(shù)都是兩個(gè)素?cái)?shù)(只能被和它本身整除的數(shù))之和。如6=3+3,12=5+7等等。這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個(gè)猜想是正確的,但他不能證明。敘述如此簡(jiǎn)單的問題,連歐拉這樣首屈一指的數(shù)學(xué)家都不能證明,這個(gè)猜想便引起了許多數(shù)學(xué)家的注意。?·哥德巴赫猜想為什么被轉(zhuǎn)化為證明1+1?·哥德巴赫猜想的內(nèi)容·哥德巴赫猜想難在哪里?·哥德巴赫猜想有什么新進(jìn)展·哥德巴赫猜想與1+1是什么關(guān)系?3
4、.費(fèi)馬大定理又稱費(fèi)馬最后定理,而當(dāng)時(shí)人們稱之為“定理”,并不是真的相信費(fèi)馬已經(jīng)證明了它。經(jīng)過三個(gè)半世紀(jì)的努力,這個(gè)世紀(jì)數(shù)論難題由普林斯頓大學(xué)英國(guó)數(shù)學(xué)家安德魯·懷爾斯和他的學(xué)生理查·泰勒于1995年成功證明。證明利用了很多新的數(shù)學(xué),包括代數(shù)幾何中的橢圓曲線和模形式,以及伽羅華理論和Hecke代數(shù)等,而安德魯·懷爾斯由于成功證明此定理,獲得了1998年的菲爾茲獎(jiǎng)特別獎(jiǎng)以及2005年度邵逸夫獎(jiǎng)的數(shù)學(xué)獎(jiǎng)。?·WILES證明費(fèi)馬大定理的成功時(shí)間為何其說不一?·如何證明費(fèi)馬大定理?·費(fèi)馬大定理中的增元增比·哪里可以看到費(fèi)馬大定理的完整解答?·費(fèi)馬大定理帶圖詳解(緊急)4.NP完全問題NP
5、完全問題是不確定性圖靈機(jī)在P時(shí)間內(nèi)能解決的問題,是世界七大數(shù)學(xué)難題之一。NP完全問題排在百萬美元大獎(jiǎng)的首位,足見他的顯赫地位和無窮魅力。問題就在這個(gè)問號(hào)上,到底是NP等於P,還是NP不等於P。NP里面的N,不是Non-Polynomial的N,是Non-Deterministic(意思是非確定性的),P代表Polynomial倒是對(duì)的。NP就是Non-deterministicPolynomial的問題,也即是多項(xiàng)式復(fù)雜程度的非確定性問題。?·哲學(xué)問題,NP完全理論引出的人們能否完全認(rèn)識(shí)世界?·什么是NP-完全問題·NP完全問題?·請(qǐng)問優(yōu)化問題中的np難,np不完全中的np是
6、什么意思·求一本關(guān)于NP完全問題的書·5.霍奇猜想二十世紀(jì)的數(shù)學(xué)家們發(fā)現(xiàn)了研究復(fù)雜對(duì)象的形狀的強(qiáng)有力的辦法?;鞠敕ㄊ菃栐谠鯓拥某潭壬?,我們可以把給定對(duì)象的形狀通過把維數(shù)不斷增加的簡(jiǎn)單幾何營(yíng)造塊粘合在一起來形成。不幸的是,在這一推廣中,程序的幾何出發(fā)點(diǎn)變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件?;羝娌孪霐嘌裕瑢?duì)于所謂射影代數(shù)簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實(shí)際上是稱作代數(shù)閉鏈的幾何部件的(有理線性)組合。?·請(qǐng)問什么是霍奇猜想?·什么是”霍奇猜想”?·誰知道7大數(shù)學(xué)難題的具體內(nèi)容是什么啊?·求7個(gè)千僖難題的具體問題·數(shù)學(xué)八大猜想是什么·6.
7、龐加萊猜想如果我們伸縮圍繞一個(gè)蘋果表面的橡皮帶,那么我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動(dòng)收縮為一個(gè)點(diǎn)。另一方面,如果我們想象同樣的橡皮帶以適當(dāng)?shù)姆较虮簧炜s在一個(gè)輪胎面上,那么不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點(diǎn)的。我們說,蘋果表面是“單連通的”,而輪胎面不是。大約在一百年以前,龐加萊已經(jīng)知道,二維球面本質(zhì)上可由單連通性來刻畫,他提出三維球面的對(duì)應(yīng)問題。?·究竟是誰破解龐加萊猜想?·什么是歌德巴赫猜想和龐加萊猜想·證明龐加萊猜想·請(qǐng)問什么是龐加萊猜想,還有關(guān)于四色問題的研究情況?