資源描述:
《基于.深度學(xué)習(xí)的圖像超分辨率重建設(shè)計(jì)研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、.........................畢業(yè)設(shè)計(jì)(論文)基于深度學(xué)習(xí)的圖像超分辨率重建研究院別數(shù)學(xué)與統(tǒng)計(jì)學(xué)院專業(yè)名稱信息與計(jì)算科學(xué)班級(jí)學(xué)號(hào)5133117學(xué)生姓名楚文玉指導(dǎo)教師張琨2017年06月10日專業(yè)資料分享.........................基于深度學(xué)習(xí)的圖像超分辨率重建研究摘要人工神經(jīng)網(wǎng)絡(luò)憑借其超強(qiáng)的學(xué)習(xí)能力,使得人工智能得到迅猛的發(fā)展,讓人工神經(jīng)網(wǎng)絡(luò)再次成為研究熱點(diǎn)。目前深度學(xué)習(xí)已經(jīng)廣泛應(yīng)用于計(jì)算機(jī)視覺,語音處理,自然語言處理等各個(gè)領(lǐng)域,甚至在某些領(lǐng)域已經(jīng)起到了主導(dǎo)作用。單一圖像超分辨率重建技術(shù)旨在將一個(gè)低分辨率圖像經(jīng)過一系列算法重構(gòu)出對(duì)應(yīng)的高分辨
2、率圖像。目前比較成熟的方法有基于頻域法,非均勻圖像插值法,凸集投影法,最大后驗(yàn)概率法以及稀疏表示法。本文主要研究利用深度學(xué)習(xí)實(shí)現(xiàn)單一圖像超分辨率重建。本文首先簡(jiǎn)要介紹人工神經(jīng)網(wǎng)絡(luò)的發(fā)展歷程,然后介紹深度學(xué)習(xí)在計(jì)算機(jī)視覺方面的應(yīng)用。然后介紹神經(jīng)網(wǎng)絡(luò)的一些理論知識(shí),最后介紹深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN,ConvolutionalNeuralNetwork)。本文研究如何利用卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)超分辨率重建。卷積神經(jīng)網(wǎng)絡(luò)分為三層結(jié)構(gòu),第一層的作用是特征塊的提取和表示,第二層的作用是非線性映射,第三層的作用是重建出高分辨率圖像。本文首先將一個(gè)圖像降采樣再雙三次插值作為低分辨率圖像,作為卷積
3、神經(jīng)網(wǎng)絡(luò)的輸入,而高分辨率圖像作為卷積神經(jīng)網(wǎng)絡(luò)的輸出,利用卷積神經(jīng)網(wǎng)絡(luò)建立低分辨率,高分辨率之間的映射。最后針對(duì)該模型進(jìn)行改進(jìn),再加入一層作為特征提取。最后利用深度學(xué)習(xí)框架TensorFlow實(shí)現(xiàn)上述模型。最后研究快速超分辨率重建模型,并針對(duì)模型層數(shù)和過濾器大小進(jìn)行改進(jìn),與先前實(shí)驗(yàn)做比對(duì)。關(guān)鍵字:超分辨率重建,卷積神經(jīng)網(wǎng)絡(luò),深度學(xué)習(xí),TensorFlow專業(yè)資料分享.........................ImageSuper-ResolutionUsingDeeplearningAuthor:ChuWen-yuTutor:ZhangKunAbstractArtificia
4、lNeuralNetworkbecauseofitsstrongabilitytolearn,getrapiddevelopmentofartificialintelligence,lettheArtificialNeuralNetworkbecometheresearchupsurgeagain.Deeplearninghasbeenwidelyusedincomputervision,speechprocessing,naturallanguageprocessingandsoon.Thesuper-resolution(SR)techniqueisdesignedtorefa
5、ctoralow-resolutionimagethroughaseriesofalgorithmstoreconstructthecorrespondinghigh-resolutionimage.Currently,themethodoffrequencydomain,Non-uniformimageinterpolation,Projectionontoconvexset(POCS),Maximumaposterior(MPA)andsparsematrixmethodarethemorematuremethods.Thispapermainlyresearchesthere
6、alizationofsuper-resolution(SR)reconstructionusingdeeplearning.Inthisthesis,firstisabriefintroductionofthedevelopmentofartificialneuralnetwork,thenintroducestheapplicationofdeeplearningincomputervision.Withthatintroducessometheoreticalknowledgeofneuralnetwork,andfinallyintroducestheconvolution
7、neuralnetwork(CNN)indeeplearning.Thisarticlemainlyresearcheshowtousetheconvolutionneuralnetwork(CNN)togetthesuper-resolutionreconstruction.Theconvolutionneuralnetworkcontainsthreestructures,theeffectofthefirstlayerisPatchextractionandre