資源描述:
《電路答案內(nèi)容》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、
2、第一章答案1.1解:圖示電路電流的參考方向是從a指向b。當時間t<2s時電流從a流向b,與參考方向相同,電流為正值;當t>2s時電流從b流向a,與參考方向相反,電流為負值。所以電流的數(shù)學表達式為答案1.2解:當時<0其真實極性與參考方向相反,即b為高電位端,a為低電位端;當時>0其真實極性與參考方向相同,即a為高電位端,b為低電位端。答案1.3解:(a)元件A電壓和電流為關(guān)聯(lián)參考方向。元件A消耗的功率為則真實方向與參考方向相同。(b)元件B電壓和電流為關(guān)聯(lián)參考方向。元件B消耗的功率為則真實方向與參考方向相反。(c)元件C電壓和電流為非關(guān)聯(lián)參考方向。元件C發(fā)出的功率為則真實方向
3、與參考方向相反。答案1.4解:對節(jié)點列KCL方程節(jié)點③:,得節(jié)點④:,得
4、節(jié)點①:,得節(jié)點⑤:,得若只求,可做閉合面如圖(b)所示,對其列KCL方程,得解得答案1.5解:如下圖所示(1)由KCL方程得節(jié)點①:節(jié)點②:節(jié)點③:節(jié)點④:若已知電流減少一個,不能求出全部未知電流。(2)由KVL方程得回路:回路:回路:
5、回路:若已知支路電壓減少一個,不能求出全部未知電壓。答案1.6解:各元件電壓電流的參考方向如圖所示。元件1消耗功率為:對回路列KVL方程得元件2消耗功率為:元件3消耗功率為:對節(jié)點①列KCL方程元件4消耗功率為:答案1.7解:對節(jié)點列KCL方程節(jié)點①:節(jié)點③:節(jié)點②:對
6、回路列KVL方程得:回路:回路:答案1.8解:由歐姆定律得對節(jié)點①列方程
7、對回路列方程因為電壓源、電流源的電壓、電流參考方向為非關(guān)聯(lián),所以電源發(fā)出的功率分別為即吸收功率。答案1.9解:(a)電路各元件電壓、電流參考方向如圖(a)所示。由歐姆定律得又由KCL得電壓源發(fā)出功率為電流源發(fā)出功率為電阻消耗功率為(b)電路各元件電壓、電流參考方向如圖(b)所示。電壓源發(fā)出功率為由KVL可得電流源發(fā)出功率為電阻消耗功率為答案1.10解:取電阻元件和網(wǎng)絡(luò)N電壓、電流為關(guān)聯(lián)參考方向如圖所示。
8、對節(jié)點①列方程對回路列方程回路得回路得網(wǎng)絡(luò)N吸收的功率電流源發(fā)出的功率注釋:根據(jù)電流源的特性,圖中與電
9、流源串聯(lián)的電阻只影響電流源端電壓或者說只影響電流源提供的功率。答案1.11解:設(shè)各元件電壓電流方向如圖所示。對節(jié)點列方程節(jié)點①:節(jié)點②:對回路列方程:得電壓源發(fā)出的功率
10、電流源發(fā)出的功率答案1.12解:,受控電壓源發(fā)出的功率受控電流源發(fā)出的功率注釋:受控電源可能處于供電狀態(tài),例如圖中的CCVS,也可能處于用電狀態(tài),例如圖中的VCCS答案1.13解:對回路列方程回路回路將代入,解得答案1.14解:設(shè)各元件電流參考方向如圖所示。對回路列方程:回路得回路得
11、對節(jié)點列方程:節(jié)點①:節(jié)點②:電壓源發(fā)出的功率:與串聯(lián)的電壓源發(fā)出的功率:純電壓源發(fā)出的功率:受控電流源發(fā)出的功率:,實際吸收功
12、率。答案1.15解:(a)對節(jié)點①列KCL方程得由KVL得(b)由KCL得由KVL得(c)由KCL,得由KVL得注釋:圖(c)電路中不含獨立電源,其關(guān)系為比例關(guān)系。答案1.16解:(a)S斷開時,電壓源的電壓、電流及功率與右側(cè)電阻的電壓、電流及功率對應(yīng)相同;S閉合時,由于中間電阻R是并聯(lián)接入電路,故右側(cè)電阻R的電壓、電流及功率不受影響。但由于所接入的電阻電流和功率與右側(cè)電阻相同,故電壓源的電流及提供功率要增大一倍。
13、(b)S斷開時,兩個電阻的電流、電壓和功率相同,電流源的電流與兩個電阻的電流相同,電壓和功率是每個電阻的二倍。當S閉合時,上側(cè)電阻被短路,由于右側(cè)電阻始終與電流源相
14、串聯(lián),故右側(cè)電阻R的電壓、電流及功率不受影響。電流源的電壓、電流和功率與右側(cè)電阻的電壓、電流和功率相同,電壓和功率均降低了一半。第二章答案2.1解:本題練習分流、分壓公式。設(shè)電壓、電流參考方向如圖所示。(a)由分流公式得:解得(b)由分壓公式得:解得答案2.2解:電路等效如圖(b)所示。圖中等效電阻由分流公式得:電壓再對圖(a)使用分壓公式得:
15、答案2.3解:設(shè)與的并聯(lián)等效電阻為(1)由已知條件得如下聯(lián)立方程:由方程(2)、(3)解得再將代入(1)式得答案2.4解:由并聯(lián)電路分流公式,得由節(jié)點①的得答案2.5解:首先將電路化簡成圖(b)。圖中由并聯(lián)電路分流公式得及
16、再由圖(a)
17、得由KVL得,答案2.6圖2.6解:(a)設(shè)和為1級,則圖題2.6(a)為2級再加。將端用始端替代,則變?yōu)?級再加,如此替代下去,則變?yōu)闊o窮級。從始端看等效電阻為,從端看為級,也為,則圖(a)等效為圖(a-1)。解得因為電阻為正值,所以應(yīng)保留正的等效電阻,即(1)(b)圖(b)為無限長鏈形電路,所以從和向右看進去的等效電阻均為,故計算的等效電路如圖(b-1)所示。參照圖(a-1)及式(1)得:代入數(shù)據(jù)得:所以答案2.7
18、解(a)電流源與電阻R串聯(lián)的一端口,其對外作用,可用電流源等效代替,如圖