資源描述:
《圓的知識(shí)點(diǎn)總結(jié)與典型例題.docx圓的知識(shí)點(diǎn)總結(jié)與典型例題》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫。
1、《圓》章節(jié)知識(shí)點(diǎn)復(fù)習(xí)一、圓的概念集合形式的概念:1、圓可以看作是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合;2、圓的外部:可以看作是到定點(diǎn)的距離大于定長(zhǎng)的點(diǎn)的集合;3、圓的內(nèi)部:可以看作是到定點(diǎn)的距離小于定長(zhǎng)的點(diǎn)的集合軌跡形式的概念:1、圓:到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡就是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓;(補(bǔ)充)2、垂直平分線:到線段兩端距離相等的點(diǎn)的軌跡是這條線段的垂直平分線(也叫中垂線);3、角的平分線:到角兩邊距離相等的點(diǎn)的軌跡是這個(gè)角的平分線;4、到直線的距離相等的點(diǎn)的軌跡是:平行于這條直線且到這條直線的距離等于定長(zhǎng)的兩條直線;5、到兩條平行線距離相等的點(diǎn)的
2、軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線。二、點(diǎn)與圓的位置關(guān)系1、點(diǎn)在圓內(nèi)點(diǎn)在圓內(nèi);2、點(diǎn)在圓上點(diǎn)在圓上;3、點(diǎn)在圓外點(diǎn)在圓外;三、直線與圓的位置關(guān)系1、直線與圓相離無交點(diǎn);2、直線與圓相切有一個(gè)交點(diǎn);3、直線與圓相交有兩個(gè)交點(diǎn);四、圓與圓的位置關(guān)系外離(圖1)無交點(diǎn);外切(圖2)有一個(gè)交點(diǎn);相交(圖3)有兩個(gè)交點(diǎn);內(nèi)切(圖4)有一個(gè)交點(diǎn);內(nèi)含(圖5)無交點(diǎn);五、垂徑定理垂徑定理:垂直于弦的直徑平分弦且平分弦所對(duì)的弧。推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?。唬?)弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩
3、條??;(3)平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧以上共4個(gè)定理,簡(jiǎn)稱2推3定理:此定理中共5個(gè)結(jié)論中,只要知道其中2個(gè)即可推出其它3個(gè)結(jié)論,即:①是直徑②③④弧?、莼』≈腥我?個(gè)條件推出其他3個(gè)結(jié)論。推論2:圓的兩條平行弦所夾的弧相等。即:在⊙中,∵∥∴弧弧六、圓心角定理圓心角定理:同圓或等圓中,相等的圓心角所對(duì)的弦相等,所對(duì)的弧相等,弦心距相等。此定理也稱1推3定理,即上述四個(gè)結(jié)論中,只要知道其中的1個(gè)相等,則可以推出其它的3個(gè)結(jié)論,即:①;②;③;④弧弧七、圓周角定理1、圓周角定理:同弧所對(duì)的圓周角等于它所對(duì)的圓心的角的一半
4、。即:∵和是弧所對(duì)的圓心角和圓周角∴2、圓周角定理的推論:推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧是等弧;即:在⊙中,∵、都是所對(duì)的圓周角∴推論2:半圓或直徑所對(duì)的圓周角是直角;圓周角是直角所對(duì)的弧是半圓,所對(duì)的弦是直徑。即:在⊙中,∵是直徑或∵∴∴是直徑推論3:若三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。即:在△中,∵∴△是直角三角形或注:此推論實(shí)是初二年級(jí)幾何中矩形的推論:在直角三角形中斜邊上的中線等于斜邊的一半的逆定理。在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等.八、圓內(nèi)接四邊形圓的內(nèi)
5、接四邊形定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),外角等于它的內(nèi)對(duì)角。即:在⊙中,∵四邊形是內(nèi)接四邊形∴九、切線的性質(zhì)與判定定理(1)切線的判定定理:過半徑外端且垂直于半徑的直線是切線;兩個(gè)條件:過半徑外端且垂直半徑,二者缺一不可即:∵且過半徑外端∴是⊙的切線(2)性質(zhì)定理:切線垂直于過切點(diǎn)的半徑(如上圖)推論1:過圓心垂直于切線的直線必過切點(diǎn)。推論2:過切點(diǎn)垂直于切線的直線必過圓心。以上三個(gè)定理及推論也稱二推一定理:即:①過圓心;②過切點(diǎn);③垂直切線,三個(gè)條件中知道其中兩個(gè)條件就能推出最后一個(gè)。十、切線長(zhǎng)定理切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等
6、,這點(diǎn)和圓心的連線平分兩條切線的夾角。即:∵、是的兩條切線∴平分十一、圓冪定理(1)相交弦定理:圓內(nèi)兩弦相交,交點(diǎn)分得的兩條線段的乘積相等。即:在⊙中,∵弦、相交于點(diǎn),∴(2)推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)。即:在⊙中,∵直徑,∴(3)切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。即:在⊙中,∵是切線,是割線∴(4)割線定理:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等(如上圖)。即:在⊙中,∵、是割線∴十二、兩圓公共弦定理圓公共弦定理:兩
7、圓圓心的連線垂直并且平分這兩個(gè)圓的的公共弦。如圖:垂直平分。即:∵⊙、⊙相交于、兩點(diǎn)∴垂直平分十三、圓的公切線兩圓公切線長(zhǎng)的計(jì)算公式:(1)公切線長(zhǎng):中,;(2)外公切線長(zhǎng):是半徑之差;內(nèi)公切線長(zhǎng):是半徑之和。十四、圓內(nèi)正多邊形的計(jì)算(1)正三角形在⊙中△是正三角形,有關(guān)計(jì)算在中進(jìn)行:;(2)正四邊形同理,四邊形的有關(guān)計(jì)算在中進(jìn)行,:(3)正六邊形同理,六邊形的有關(guān)計(jì)算在中進(jìn)行,.十五、扇形、圓柱和圓錐的相關(guān)計(jì)算公式1、扇形:(1)弧長(zhǎng)公式:;(2)扇形面積公式::圓心角:扇形多對(duì)應(yīng)的圓的半徑:扇形弧長(zhǎng):扇形面積2、圓柱:(1)圓柱側(cè)面展開圖=(2)圓柱
8、的體積:(2)圓錐側(cè)面展開圖(1)=(2)圓錐的體積:典型例題例1.兩個(gè)同樣大小