面面垂直的判定與性質(zhì)

面面垂直的判定與性質(zhì)

ID:26316543

大?。?.21 MB

頁(yè)數(shù):32頁(yè)

時(shí)間:2018-11-26

面面垂直的判定與性質(zhì)_第1頁(yè)
面面垂直的判定與性質(zhì)_第2頁(yè)
面面垂直的判定與性質(zhì)_第3頁(yè)
面面垂直的判定與性質(zhì)_第4頁(yè)
面面垂直的判定與性質(zhì)_第5頁(yè)
資源描述:

《面面垂直的判定與性質(zhì)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。

1、平面與平面垂直的 判定與性質(zhì)二、直線與平面垂直的判定定理線線垂直線面垂直1.圖形表示2.符號(hào)表示關(guān)鍵:線不在多,相交則行一、直線與平面垂直的定義復(fù)習(xí)回顧:(一)請(qǐng)同學(xué)們回憶“如何判定直線和平面垂直?”一、平面幾何知識(shí):等腰三角形底邊上的中線垂直于底邊勾股定理圓直徑所對(duì)的圓周角是直角菱形對(duì)角線互相垂直矩形鄰邊互相垂直二、空間直線和平面垂直的定義。復(fù)習(xí)回顧:(二)判斷空間垂直關(guān)系的關(guān)鍵是線線垂直,你能想起多少種判斷線線垂直的方法?獨(dú)立思考后舉手回答,其他同學(xué)可作補(bǔ)充。一、直觀感知,導(dǎo)入新課:(一)、生活中面

2、面垂直的例子無(wú)處不在,你能舉幾個(gè)例子嗎?請(qǐng)獨(dú)立思考后舉手發(fā)言,其他同學(xué)可作補(bǔ)充。門扇所在的平面和地面所在的平面之間的位置關(guān)系.實(shí)例感受一、整體感知,導(dǎo)入新課墻所在的平面和地面所在的平面之間的位置關(guān)系.一、整體感知,導(dǎo)入新課如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,則這兩個(gè)平面互相垂直判定定理AB返回:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。2.符號(hào)表示:??線面垂直面面垂直線線垂直面面垂直的判定定理二、深入探究,形成規(guī)律1.圖形表示:探究1:ACBDA1C1B1D1(二)在如圖正方體,

3、請(qǐng)問(wèn)正方體的哪些面與垂直?三、活學(xué)活用,提升能力(三)ABCD,判斷在該幾何體中哪些面互相垂直?三、活學(xué)活用,提升能力ABOCP(四)、在獨(dú)立思考的基礎(chǔ)上,在練習(xí)本上寫出證明過(guò)程,注意符號(hào)準(zhǔn)確,邏輯合理。例1如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上不同于A,B的任意一點(diǎn)。求證:平面PAC⊥平面PBC.三、活學(xué)活用,提升能力證明:設(shè)已知⊙O平面為α三、活學(xué)活用,提升能力例2:正方體ABCD-A1B1C1D1中求證:證明:ACBDA1C1B1D1練習(xí)3:ABCD是正方形,O是正方形的中心

4、,PO⊥平面ABCD,E是PC的中點(diǎn),求證:(1)AP∥平面BDE;(2)平面PAC⊥BDE.POABCDE證明面面垂直找線面垂直,用判定定理計(jì)算二面角為90o,用定義證明面面垂直找線面垂直,用判定定理計(jì)算二面角為90o,用定義ablllc思考:已知黑板面與地面垂直,你能在黑板面內(nèi)找到一條直線與地面平行、相交或垂直嗎?這樣的直線分別有什么性質(zhì)?類比:面面平行→線面平行, 面面垂直→線面垂直??面面垂直性質(zhì)定理判定定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.簡(jiǎn)記:面面垂直,則線面垂直

5、符號(hào)語(yǔ)言:圖形:lm面面垂直性質(zhì)定理運(yùn)用1.求證:如果兩個(gè)平面互相垂直,那么經(jīng)過(guò)第一個(gè)平面內(nèi)的一點(diǎn)垂直于第二個(gè)平面的直線,在第一個(gè)平面內(nèi).垂直關(guān)系綜述線線垂直面面垂直線面垂直線線平行綜合證明問(wèn)題綜合證明問(wèn)題綜合證明問(wèn)題已知:直線AB?平面?,直線AB?平面?。求證:平面??平面?。證明:設(shè)??β=CD,則AB?β=B,在平面β內(nèi)過(guò)B點(diǎn)作BE⊥CD。αβABCDE面面垂直判定定理證明過(guò)程已知:平面?⊥平面β,平面?∩平面β=CD,求證:直線AB⊥平面β。AB⊥CD且AB交CD于B。A?平面?,αβABCD

6、E證明:在平面β內(nèi)過(guò)B點(diǎn)作BE⊥CD,面面垂直性質(zhì)定理證明過(guò)程1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個(gè)半平面。從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llllαlαl按此繼續(xù)l??AB??二面角?-AB-???l二面角?-l-?二面角C-AB-DABCD5OBA∠AOB二面角的認(rèn)識(shí)注意二面角的平面角必須滿足:3)角的邊都要垂直于二面角的棱1)角的頂點(diǎn)在棱上2)角的兩邊分別在兩個(gè)面內(nèi)以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分

7、別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。10??lOAB??AOB二面角的平面角1、定義法根據(jù)定義作出來(lái)2、垂面法作與棱垂直的平面與兩半平面的交線得到??lγABO12??lOABAO??lD3、三垂線定理法借助三垂線定理或其逆定理作出來(lái)二面角的平面角的作法尋找平面角D端點(diǎn)中點(diǎn)尋找平面角中點(diǎn)EGF小結(jié):求二面角大小的步驟為:(1)找出或作出二面角的平面角;(2)證明其符合定義垂直于棱;(3)計(jì)算.

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。