2006 neural-network based analysis and prediction of a compressor characteristic performance map

2006 neural-network based analysis and prediction of a compressor characteristic performance map

ID:30277376

大小:204.18 KB

頁數(shù):8頁

時(shí)間:2018-12-28

2006 neural-network based analysis and prediction of a compressor characteristic performance map_第1頁
2006 neural-network based analysis and prediction of a compressor characteristic performance map_第2頁
2006 neural-network based analysis and prediction of a compressor characteristic performance map_第3頁
2006 neural-network based analysis and prediction of a compressor characteristic performance map_第4頁
2006 neural-network based analysis and prediction of a compressor characteristic performance map_第5頁
資源描述:

《2006 neural-network based analysis and prediction of a compressor characteristic performance map》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、APPLIEDENERGYAppliedEnergy84(2007)48–55www.elsevier.com/locate/apenergyNeural-networkbasedanalysisandpredictionofacompressor’scharacteristicperformancemapaa,*abYouhongYu,LingenChen,FengruiSun,ChihWuaPostgraduateSchool,NavalUniversityofEngineering,Wuhan430033,PRChinabMechanicalEngi

2、neeringDepartment,USNavalAcademy,Annapolis,MD21402,USAAvailableonline15June2006AbstractThedi?culties,duetoalackofinformationaboutstage-by-stageaxial-compressorperformance,areanalyzed.Toovercometheseissues,athree-layerback-propagationneural-networkappliedLevenberg–Marquardtalgorith

3、mispresentedanddiscussed.Theexperimentaldataprovidedbymanufacturersareusedfortheneural-networktraining.Throughtwicetraining,thecompressor’sperformancemapcanbepredicted.Theresultscanbeusedforthedevelopmentofano?-designmodeloroveralldynamicsimulationofthebehaviourofagas-turbinepower

4、-plant.ó2006ElsevierLtd.Allrightsreserved.Keywords:Compressor;Characteristicmap;Neural-network;Performanceprediction1.IntroductionTheincreasingsuccessofgas-turbinepower-plantsinindustrialandmarineapplicationsisowedpartlytotheirquickresponsestoloadvariations.Gas-turbinepower-plantp

5、erfor-manceunderISOconditions(burningareferencefuel,suchasnaturalgas,at150°C,atmo-sphericpressure,and60%relativehumidity)isinformationprovidedbymachinemanufactures.Nevertheless,gas-turbinepower-plantfrequentlyoperatesundero?-designconditions,forinstance,atpartloadorunderdi?erentat

6、mosphericconditions,andintheseconditions,thechangesofgas-turbinepower-plantperformancecanbedramatic.Inordertodescribetheo?-designperformanceofgas-turbinepower-plantaccurately,goodpredictions*Correspondingauthor.Tel.:+862783615046;fax:+862783638709.E-mailaddresses:lingenchen@hotmai

7、l.com,lgchenna@yahoo.com(L.Chen).0306-2619/$-seefrontmatteró2006ElsevierLtd.Allrightsreserved.doi:10.1016/j.apenergy.2006.04.005Y.Yuetal./AppliedEnergy84(2007)48–5549ofcharacteristiccurvesofgas-turbinepower-plantcomponentsareessential[1].Amajorproblem,however,isalackofinformationa

8、boutstage-by-stageperformance.The

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。