基于多智能體遺傳算法的約束優(yōu)化方法-研究

基于多智能體遺傳算法的約束優(yōu)化方法-研究

ID:31977598

大?。?24.21 KB

頁數(shù):56頁

時間:2019-01-29

基于多智能體遺傳算法的約束優(yōu)化方法-研究_第1頁
基于多智能體遺傳算法的約束優(yōu)化方法-研究_第2頁
基于多智能體遺傳算法的約束優(yōu)化方法-研究_第3頁
基于多智能體遺傳算法的約束優(yōu)化方法-研究_第4頁
基于多智能體遺傳算法的約束優(yōu)化方法-研究_第5頁
資源描述:

《基于多智能體遺傳算法的約束優(yōu)化方法-研究》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在教育資源-天天文庫。

1、AbstractIIIAbstractEvolutionaryAlgorithmprovidesanewwaytosolvecomplexoptimizationproblems.Becauseofitsintelligence,universality,robustnessandglobalsearchability,EAshavebeenwidelyusedinthisfieldandhaveagreatsuccessinrecentlyseveraldecades.Itiscommontofaceanumberofoptimization

2、problemsinmanyareasoftherealworld,especiallyinthescienceandengineeringfields.However,theseproblemsareoftenconstrained.Becauseofthedifferentfeaturesoftheseproblems,thetraditionalmethodsarehardtosolvetheseproblemseffectively.Asroustpopulation-basedglobalsearchmethods,Evolution

3、aryAlgorithms(EAs)areverypromisingtosolvetheconstrainedoptimizationproblems.TheaimofthisdissertationistoexplorethetheoriesandmechanismsofEAs,andtodothecorrespondingtheoreticandexperimentalanalyses.Themainresearchworkinthisdissertationconsistofthefollowingaspects.(1)Weextendt

4、hemultiagentgeneticalgorithm(MAGA)tosolveconstrainedoptimizationproblems(COPs)(MAGA_COPs)bycombiningtheneighborhoodcompetitionoperatorwithanefficientconstrainthandlingtechnique.Thismethodcanmakegooduseoftheinformationofinfeasiblesolutionswhichisaimatguidingthesearchtowardthe

5、globaloptimaofCOPs.Thisalgorithmistestedon12benchmarkfunctions,andtheresultshowsthat12benchmarkfunctionscanfindglobaloptima.(2)AnapproximationstrategyforfeasibleregionalsousedinMAGA_COPs,thismethodmakethesolutionoffunctionstoapproachtheglobaloptimalsolutionandeffectiveinprev

6、entingthealgorithmtrappingintolocaloptima.Thealgorithmistestedon12benchmarkfunctions,andtheresultshowsthatthealgorithmisoutperformsotherscomparedwithsomeotherstate-of-the-artalgorithms.(3)WeimproveMAGA_COPsbycombiningMAGA_COPswithtraditionalmethods.Hybridapproachbasedonmulti

7、agentgeneticalgorithmisgiven,inordertoovercometheslowerconvergenceofthestandardgeneticalgorithm,andinwhichthelocalsearchisweak.Thealgorithmistestedon12benchmarkfunctions,andtheresultshowsthatthealgorithmisanefficientandconvergenthybridgeneticalgorithm.(4)Weimprovethemultiage

8、ntgeneticalgorithm(MAGA)tosolvelayoutoptimizationbycombiningtheneighborhood

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。