資源描述:
《移動(dòng)機(jī)器人的路徑規(guī)劃與路徑識(shí)別研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、蠶豢瓣菠大學(xué)硪童磷突生學(xué)位論文繁l燹摘要隨著科舉技術(shù)的進(jìn)步和機(jī)器入學(xué)的發(fā)展,移渤機(jī)器人的戚用越來(lái)越廣泛。作為移動(dòng)機(jī)器人“智能”的重要糊索一一路徑規(guī)劃與路徑識(shí)別,成為具露理論意義秘實(shí)用價(jià)值的藿要課題。尤其當(dāng)機(jī)器人硬《牛系統(tǒng)的糖度在短期內(nèi)不麓褥妥解決瓣請(qǐng)流下,對(duì)算法懿磷究藏顯得蘢為鬟要。對(duì)于路徑規(guī)劃問(wèn)題,本文首先在藻本遺傳算法的基礎(chǔ)上,掇出了一種帶稿發(fā)式的遺傳算法,在簡(jiǎn)單環(huán)境中規(guī)劃_出一條最優(yōu)路徑。其次針對(duì)復(fù)雜環(huán)境中豹磅經(jīng)援劃閹題提出了禁忌一遺簧冀法,矮遺傳算法提供莠牙援索主攝黎,嵌入禁繇搜索的個(gè)體竄行搜索方姣
2、,使算法散能褥戳改避。仿真表明,該方法能有效地提高算法的收斂速度與解的質(zhì)量。最后根據(jù)機(jī)器人工作的安際情況,提出了多約束條件下的路徑規(guī)劃問(wèn)題,通過(guò)全局規(guī)劃垮局部規(guī)劃相綴合瓣方法,技蜀了一條滿足無(wú)瑾、輟逶攜箍不超避羧度蠹簸簸滔徑。目霹,在所有仿真研究之后,從理論上對(duì)各種算法的收斂性進(jìn)行了分析。對(duì)于路徑識(shí)別問(wèn)題,本文采用BP神經(jīng)網(wǎng)絡(luò)的研究方法。在附加動(dòng)量項(xiàng)法期自適應(yīng)學(xué)習(xí)速率法的蹙礎(chǔ)上,提嫩了分階段學(xué)習(xí)法。著以籀二屆全國(guó)大舉生凝囂太嘏筏大賽靜場(chǎng)德為辯象逡行儔寞,實(shí)駿裘韜,致遂靜辜聿經(jīng)霞絡(luò)擎羽收斂速度快、能跳離塌部極
3、小值,髓識(shí)別率高,具有較強(qiáng)的抗干擾和抗噪能力。關(guān)鍵詞:移動(dòng)楓器入路徑蕊捌遺傳算法禁忌搜索路徑識(shí)剮BP神經(jīng)網(wǎng)絡(luò)囂南鶼技大學(xué)碩士耢究生學(xué)位論文第l{燹AbstractWiththedevelopmentofscienceandtechnologyaswellastherobotics,robotshavemoreandmoreapplicationsinvariousfields。Thepathplanningandthepathrecognition,asimportantfactorsinrobotinte
4、lligence,haveimportantvalueintheoryandpractice.Whentheprecisionprobleminrobothardwaresystemcan’tbesolved,thealgorithmresearchappearsparticularlysignificant.Astopath—planningproblem.thispaperfirstputsforwardageneticalgorithmwithheuristictoplananoptimalpathf
5、orasimpleenvironment.Thenaimingatthepathplanningincomplexenvironment,tabu-geneticalgorithmhasbeenpresented,whichadoptsgeneticalgorithmtosupplythemainflameofparallelsearchandembedstheindividualserialsearchmodeoftabusearch,thusthealgorithmcanbedeveloped.Thes
6、imulationresultsindicatethatthemethodcanefficientlyimprovethisalgorithminconvergencespeedandsolutionquality.Furthermore。accordingtotherobot’Srealworkcondition,thepaperpresentsapath—planningproblemwithmulti—restrictions,Bycombiningglobalplanningandlocalplan
7、ning,theshortestpaththatsatisfiescollisionfreeandtransitgoodsnon—excesscanbefound.Finally,afterallthesimulationresearch,thepaperhasanalyzedvariousalgorithmsconvergenceonthetheory+Astopath—recognitionproblem,thepaperusestheBPneuralnetwork.Onthebasesofaccess
8、ionalmomentummethodandself-adaptivestudyspeedmethod,asubsectionstudymethodhasbeenproposed.Andthenthesimulationmakesthegroundofthesecondnationalcollegestudents’robotTVcompetitionasanobject。Simulationresultssho