基于統(tǒng)計(jì)的個(gè)性化微博信息與用戶推薦

基于統(tǒng)計(jì)的個(gè)性化微博信息與用戶推薦

ID:33485445

大?。?.30 MB

頁(yè)數(shù):58頁(yè)

時(shí)間:2019-02-26

基于統(tǒng)計(jì)的個(gè)性化微博信息與用戶推薦_第1頁(yè)
基于統(tǒng)計(jì)的個(gè)性化微博信息與用戶推薦_第2頁(yè)
基于統(tǒng)計(jì)的個(gè)性化微博信息與用戶推薦_第3頁(yè)
基于統(tǒng)計(jì)的個(gè)性化微博信息與用戶推薦_第4頁(yè)
基于統(tǒng)計(jì)的個(gè)性化微博信息與用戶推薦_第5頁(yè)
資源描述:

《基于統(tǒng)計(jì)的個(gè)性化微博信息與用戶推薦》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、哈爾濱工業(yè)大學(xué)工學(xué)碩士學(xué)位論文AbstractInrecentyears,astheInternettoflourish,especiallyaccompaniedbytheriseofsocialnetworkswebsites,itwasdiscoveredthattheInternetbegantoappearonthephenomenonofinformationoverload,toomuchinformationwillnothelppeoplemoreeasilytofindinformation,butmoredifficult,fromt

2、helargeamountsofinformation,peoplecannotfindoutwhatisimportantandwhatisoptional,andsocialnetworkingisaself-medianetworkapplications,anyone,atanytimecanpostatweetonthewebsite,apparentlytoincreasethedegreeofinformationoverload.BasedonstatisticallearningpersonalizedRecommendationinSo

3、cialMediausestatisticalmachinelearningmethodtoestablishpersonalizedusermodel,tohelpusersavoidinformationoverload,themodeldiscoveryimportanttweetandfriendformicrobloguser,thistechnologyisalsoveryimportantforsocialnetworkwebsitestoimproveuserexperience,atthesametime,therecommendersy

4、stemandsocialnetworkingisthehotresearchfieldcurrently,webelievethattherecommendationinthesocialnetworkingmediaisalsoimportant.Themaincontentisdividedintotweetrecommendationandfriendrecommendationtwoparts.Fortweetsrecommendation,weproposeapersonalizedmethodtopushthetextcontenttothe

5、user,wegivethefeatureanalysisandexperimentsshowtheeffectivenessofourmethod.Forfriendsrecommendation,wehopethatbyfriendsrecommendedcarefullyforusersofsocialmedia,theywillbeabletochoosetherightfriendsandthusabletoachievetheeffectofinformationfilter.Weproposedseveralmethodsbasedoncol

6、laborativefiltering,heuristic,linkprediction,topicmodel.Finally,inordertoboostthepredictionaccuracyoffriendsrecommendation,andtotakeadvantageofmulti-models,wecombineallofmodelsbyusingensemblelearningtechnology.Theexperimentsprovedtheeffectivenessofourproposedmethods,fortheinformat

7、ionrecommended,wegettherecallrate0.49,fortheuserrecommendation,weexaminedtheperformanceofavarietyofrecommendationalgorithms,andboostperformancethroughtheensemblelearning.-II-哈爾濱工業(yè)大學(xué)工學(xué)碩士學(xué)位論文KeywordsRecommenderSystem,SocialNetwork,CollaborativeFiltering,EnsembleLearning-III-哈爾濱工業(yè)大學(xué)工

8、學(xué)碩士學(xué)位論文目錄摘要......................

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。