comparison and validation of community structures in complex networks

comparison and validation of community structures in complex networks

ID:34149042

大?。?51.63 KB

頁數(shù):25頁

時間:2019-03-03

comparison and validation of community structures in complex networks_第1頁
comparison and validation of community structures in complex networks_第2頁
comparison and validation of community structures in complex networks_第3頁
comparison and validation of community structures in complex networks_第4頁
comparison and validation of community structures in complex networks_第5頁
資源描述:

《comparison and validation of community structures in complex networks》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在教育資源-天天文庫

1、ComparisonandvalidationofcommunitystructuresincomplexnetworksMikaGustafsson,MichaelHornquist¨?,AnnaLombardiDivisionofPhysicsandElectronics,DepartmentofScienceandTechnology,Linkoping¨University,SE-60174Norrkoping,Sweden¨AbstractTheissueofpartitioninganetwo

2、rkintocommunitieshasattractedagreatdealofatten-tionrecently.Mostauthorsseemtoequatethisissuewiththeoneof?ndingthemaximumvalueofthemodularity,asde?nedbyNewman.SincetheproblemformulatedthiswayisNP-hard,mostefforthasgoneintotheconstructionofsearchalgorithms,

3、andlesstothequestionofothermeasuresofcommunitystructures,similaritiesbetweenvariouspartition-ingsandthevalidationwithrespecttoexternalinformation.Hereweconcentrateonaclassofcomputergeneratednetworksandonthreewell-studiedrealnetworkswhichconstituteabench-m

4、arkfornetworkstudies;thekarateclub,theUScollegefootballteamsandagenenetworkofyeast.Weutilizesomestandardwaysofclusteringdata(originallynotdesignedfor?ndingcommunitystructuresinnetworks)andshowthattheseclassicalmethodssometimesoutperformthenewerones.Wedisc

5、ussvar-iousmeasuresofthestrengthofthemodularstructure,andshowbyexamplesfeaturesanddrawbacks.Further,wecomparedifferentpartitionsbyapplyingsomegraph-theoreticconceptsofdistance,whichindicatethatoneofthequalitymeasuresofthedegreeofmodu-laritycorrespondsquit

6、ewellwiththedistancefromthetruepartition.Finally,weintroduceawaytovalidatethepartitioningswithrespecttoexternaldatawhenthenodesareclassi-?edbutthenetworkstructureisunknown.Thisisherepossiblesinceweknoweverythingofthecomputergeneratednetworks,aswellasthehi

7、storicalanswertohowthekarateclubandthefootballteamsarepartitionedinreality.Thepartitioningofthegenenetworkisval-idatedbyuseoftheGeneOntologydatabase,whereweshowthatacommunityingeneralcorrespondstoabiologicalprocess.arXiv:physics/0601057v1[physics.soc-ph]1

8、0Jan2006Keywords:network,community,validation,distancemeasure,hierarchicalclustering,K-means,GOPACS:89.75.Fb,89.75.Hc,87.16.Yc02.10.Ox?CorrespondingauthorEmailaddress:[mikgu,micho,annlo]@itn.liu.se(MikaGustafsson,Mi

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。