資源描述:
《導數基礎訓練題》由會員上傳分享,免費在線閱讀,更多相關內容在教育資源-天天文庫。
1、b導數基礎訓練題第1課時變化率與導數1、在曲線方程的圖象上取一點及鄰近一點,則為()A.B.C.D.2.一質點的運動方程是,則在一段時間內相應的平均速度為()A.B.C.D.3、一木塊沿某一斜面自由滑下,測得下滑的水平距離s與時間t之間的函數關系為,則秒時,此木塊在水平方向的瞬時速度為()A.2B.1C.D.4、設在可導,且,則等于()A.0B.2C.-2D.不存在5、在中,不可能()A.大于0B.等于0C.小于0D.大于0或小于06、在曲線上切線傾斜角為的點是()A.B.C.D.7、曲線在點處的切線方程為
2、()A.B.C.D.8、曲線上兩點、,若曲線上一點P處的切線恰好平行于弦,則點P的坐標是()A.B.C.D.9、若函數在處的切線的斜率為,則極限。10、函數在在處的切線的斜率為。11、如果一個質點從固定點A開始運動,在時間內的位移函數為,當且時,(1)求;(2)求。bb12、已知曲線。(1)求曲線上橫坐標為1的點處的切線的方程;(2)第(1)小題中的切線與曲線是否還有其他的公共點?第2課時導數的計算1、下列運算正確的是()A.B.C.D.2、函數的導數是()A.B.C.D.3、函數的導數是()A.B.C.D
3、.4、函數的導數是()A.B.C.D.bb5、已知,若,則的值是()A.B.C.D.6、設函數,則()A.0B.-1C.-60D.607、函數的導數為()A.B.C.D.8、函數在點處的切線方程為()A.B.C.D.9、函數的導數為。10、設,且,則。11、函數的導數為。12、已知物體的運動方程是(的單位是秒,的單位是米),則物體在時刻的速度,加速度。13、求下列函數的導數:(1);(2);(3)bb14、(選做題)求下列函數的導數:(1);(2);(3);(4);15、已知函數。(1)求這個函數的導數;(
4、2)求這個函數在點處的切線方程。16、曲線,且,求實數的值。bb第3課時導數在研究函數中的應用1、函數的單調增區(qū)間為()A.B.C.D.2、函數在上是減函數,則()A.B.C.D.3、函數在上是()A.減函數B.增函數C.在上增,在上減D.在上減,在上增4、若函數可導,則“有實根”是“有極值”的()A.必要不充分條件B.充分不必要條件C.充要條件D.必要條件5、下列函數存在極值的是()A.B.C.D.6、若在區(qū)間內有,且,則在內有()A.B.C.D.不能確定7、下列結論正確的是()A.在區(qū)間上,函數的極大值
5、就是最大值;B.在區(qū)間上,函數的極小值就是最小值;C.在區(qū)間上,函數的最大值、最小值在和時達到;D.一般地,在區(qū)間上連續(xù)的函數,在區(qū)間必有最大值和最小值8、函數在上的最大值和最小值是()A.、B.、C.、D.、9、已知函數,則在上的單調遞減區(qū)間是,單調遞增區(qū)間為。10、函數在上的最大值是,最小值是。11、函數有極大值和極小值,則的取值范圍是。bb12、設函數,(是兩兩不等的常數),則=。13、若函數,(1)求實數的取值范圍,使在上是增函數。(2)求實數的取值范圍,使恰好有三個單調區(qū)間。14、設函數,其中。(
6、1)若在處取得極值,求常數的值;(2)若在上為增函數,求的取值范圍。bb15、與是函數的兩個極值點。(1)求常數、的值;(2)判斷函數,處的值是函數的極大值還是極小值,并說明理由。第4課時生活中的優(yōu)化問題舉例1、一條長為的鐵絲截成兩段,分別彎成兩個正方形,要使兩個正方形的面積和最小,兩段鐵絲的長度分別是()A.B.C.D.2、設底部為三角形的直棱柱的體積為,那么其表面積最小時,底面邊長為()A.B.C.D.3、拋物線到直線的最短距離為()A.B.C.D.以上都不對4、以長為10的線段為直徑作半圓,則它內接矩
7、形面積的最大值為()A.10B.15C.25D.505、某工廠需要圍建一個面積為512平方米的矩形堆料場,一邊可以利用原有的墻壁,其他三邊需要砌新的墻壁,當砌壁所用的材料最省時堆料的長和寬分別為()A.32米,16米B.16米,8米C.64米,8米D.以上都不對6、如圖,一矩形鐵皮的長為,寬為bb,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?7、如圖所示鐵路線上線段長,工廠到鐵路線上A處的垂直距離為?,F在要在上選一點,從向修一條直線公路。已知鐵路運輸每噸千
8、米與公路運輸每噸千米的運費之比為,為了使原料從處運到工廠的運費最省,應選在何處?bb第1課時變化率與導數答案1-8.CDCCBDAA9.10.1011.(1);(2)12.(1);(2)有,第2課時導數的計算答案1-8.AACCDDCD9.10.111.12.13.(1)(2)(3)14.(1)(2)(3)(4)15.(1)(2)16.1bb第3課時導數在研究函數中的應用答案1-8.AABABADD9.;,10.