基于bp算法網(wǎng)格資源調(diào)度的研究

基于bp算法網(wǎng)格資源調(diào)度的研究

ID:34227350

大?。?.65 MB

頁(yè)數(shù):61頁(yè)

時(shí)間:2019-03-04

基于bp算法網(wǎng)格資源調(diào)度的研究_第1頁(yè)
基于bp算法網(wǎng)格資源調(diào)度的研究_第2頁(yè)
基于bp算法網(wǎng)格資源調(diào)度的研究_第3頁(yè)
基于bp算法網(wǎng)格資源調(diào)度的研究_第4頁(yè)
基于bp算法網(wǎng)格資源調(diào)度的研究_第5頁(yè)
資源描述:

《基于bp算法網(wǎng)格資源調(diào)度的研究》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、哈爾濱理工大學(xué)碩士學(xué)位論文基于BP算法的網(wǎng)格資源調(diào)度研究姓名:呂昌國(guó)申請(qǐng)學(xué)位級(jí)別:碩士專(zhuān)業(yè):計(jì)算機(jī)應(yīng)用技術(shù)指導(dǎo)教師:孫名松20070301哈爾濱理工大學(xué)工學(xué)碩士學(xué)位論文基于BP算法的網(wǎng)格資源調(diào)度研究摘要網(wǎng)格是新一代的互聯(lián)網(wǎng),資源調(diào)度是網(wǎng)格系統(tǒng)的最核心組成部分,由于網(wǎng)格上的資源具有分布性、異構(gòu)性、動(dòng)態(tài)性等特點(diǎn),使得網(wǎng)格中資源共享的實(shí)現(xiàn)比以前的系統(tǒng)更加困難。而神經(jīng)網(wǎng)絡(luò)是一門(mén)模仿人類(lèi)神經(jīng)中樞——大腦構(gòu)造與功能的智能科學(xué)。具有卓越的自組織、自學(xué)習(xí)能力;善于在復(fù)雜環(huán)境下,快速獲得滿(mǎn)足多種約束條件問(wèn)題的最優(yōu)化答案,所以把神經(jīng)網(wǎng)絡(luò)引入到網(wǎng)格的資源調(diào)度當(dāng)中,可

2、以很好的發(fā)揮神經(jīng)網(wǎng)絡(luò)的優(yōu)勢(shì),更好的解決網(wǎng)格的資源調(diào)度問(wèn)題。本文基于網(wǎng)格的基本概念、特點(diǎn),研究了目前比較流行的網(wǎng)格體系結(jié)構(gòu),討論了典型的網(wǎng)格技術(shù)與資源調(diào)度系統(tǒng),-對(duì)兩種主要網(wǎng)格資源模型做了深入分析的基礎(chǔ)上,提出了分層的資源調(diào)度模型和一個(gè)結(jié)構(gòu)簡(jiǎn)單功能完整的資源調(diào)度系統(tǒng)結(jié)構(gòu),把前向反饋神經(jīng)網(wǎng)絡(luò)模型中的BP算法應(yīng)用到網(wǎng)格資源調(diào)度當(dāng)中,詳細(xì)闡述了BP算法在網(wǎng)格資源調(diào)度中的具體應(yīng)用。在比較了幾種常用的網(wǎng)格仿真工具的基礎(chǔ)上,選擇了GridSim這一網(wǎng)格建模與仿真工具箱。在GridSim-I-具箱的仿真環(huán)境下,運(yùn)用JAvA編程語(yǔ)言,對(duì)基于BP算法和優(yōu)先級(jí)算法的

3、資源調(diào)度進(jìn)行了仿真實(shí)驗(yàn)。仿真實(shí)驗(yàn)結(jié)果表明:基于BP算法網(wǎng)格資源調(diào)度的結(jié)果與優(yōu)先級(jí)算法的結(jié)果相比,BP算法的任務(wù)響應(yīng)時(shí)間較快,分配的任務(wù)更加合理,能夠高效的利用網(wǎng)格計(jì)算資源。關(guān)鍵詞網(wǎng)格;資源調(diào)度:BP算法;C_rridSim工具箱蘭塵鎏耋三奎蘭三蘭罌圭主竺蘭蘭ResearchonGridResourceSchedulingBasedOnBPAlgorithmAbstractThegridisanewgenerationofIntemet,gridresourcemanagementandschedulingalethegridsystemmost

4、coreconstituents.Becausegridresourceshasthedistribution,theisomerism,dynamicandSOonthecharacteristics,causedgridtheresourcessharingrealizationtobemoredifficultthanthebeforesystem.111eneuralnetworkisoneimitatesthehumanitynervecenter·-·-cerebrumstructureinthefunctionintelligen

5、tscience.Excellentself-organization,self-learningability;Goodatfastobtainingtheoptimizedanswerwhichsatisfiesmanykindsofconstraintconditionquestionundercomplexenvironment;therefore,theneuralnetworkisintroducedtothegridresourcescheduling.TheneuralnetworkCanplaygoodadvantage,ab

6、ettersolutiongridresourcescheduling.Basedongridbasicconcept,.characteristic,thisthesisstudiedthepresentquitepopulargridarchitecture,discussedtheclassic面dtechnologyandtheschedulingofresourcessystem,analyzedtwokindsofmaingridresourcemodels,proposedthelayeredschedulingofresourc

7、esmodel,proposedonesimpleandfunctionintegrityschedulingofresourcessystemstructure,proposedapplyingthefrontfeedbackneuralnetworkmodeIinBP(BackPropagation)algorithmonthegridschedulingofresources,glaboratedemphaticallybasedonthencuralnetworkBPalgorithmgridresourcemanagementsyst

8、em.IchoseGridSimthisgridsimulationtoolbox,aftercomparingseveralkindsofcommo

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶(hù)上傳,版權(quán)歸屬用戶(hù),天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶(hù)請(qǐng)聯(lián)系客服處理。