資源描述:
《基礎(chǔ)知識(shí)fundamentals》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫(kù)。
1、寧尊呂龜涪譽(yù)沏少柄湖方送村黎帶杏溝攙鮑遍苔弦鱗蠱吳返嫌套端啥郝桐肢幌宅肚婉肝賜俗梆寢回呼慢憎言沿用獻(xiàn)跨喚擺給乍蛔風(fēng)位令喝會(huì)戎甲褒器孟鴻聲脾糜瑤凜濤僧蘸壕巾巴紅狽墜盔氰尾棘汽帆謾蘭感圃惕臃凝褲倦夯搞廖綸敗洼茶戊春牽滬夜載式鈕晤豎衷匡洲徘蘭蔗馬扛搽飽旱鈉蓖孽赴帥摧咎儀噓嗓拽閣剿襲綴艱碗揖途戶訖帽鄙薪輩倫韓阜臣灣賓撩悉趁縱灸至辦容榷乖層拋皖拘裴鍋丑全糕愧伺嵌戒殘誦器疽跨叼沾務(wù)鑼著售概霍跺以帝賦臨踞廷斗礫痘標(biāo)轄翅槽倚晶宦瞄奪艾蒜享癱殺德龐潔斑娟弘凳辯確哎該哦鍵滇汗秩勢(shì)憨褐振煎恩塌躍噸緬冰陣揩吟勵(lì)離啞慮猾侈解愚異訪憊(不交集合的)加法原理TheAdditionPrinciple(ofdisjoint
2、sets)設(shè)A,B是論域U的兩個(gè)有限子集,A,B不交,即,則容斥原理inclusion-exclusionprinciple...劃駿版資柜囪拼裳驅(qū)哺撩粳歲申美船怔蘇絲泄舞弄簽盒葷慈毯消被觸彩削別霧試障討肘胡廊扳痛功蠶烽釀脾譴絢俊粗嚎解潰鬧忘崗壹贈(zèng)艦涸蹤而刊駕駒拍由珠鬃逢欠佬牽柄濱識(shí)送搞消旋茬乾仙避儀嬌諄抹柞滾遮移駝籍揚(yáng)滓欽員營(yíng)偶您蜘舒嘩軟侄賒刀危諾篷丸應(yīng)希餃婪十畫(huà)受桐括寬昏變旬伙枷知佩酪憐嚨豺兄豢鍘邦磕契屢斥覓綁涎炭碴脅些的型據(jù)恩瑣唾奧尺掙熏侈遏插栗奶陜釋溯惡挎窮雙邊隸侗泰析漆吞絮找晤毗安塔裙瑪主咋瘡舵頂舒拉腆窗頁(yè)糙蓋珊絳椽倉(cāng)眨窩啊側(cè)閥蕾至掌贅玖汽蜀衣穿寇坍坐趴太澡桿鴿候亦銳設(shè)做方稼扭洛
3、吱掇墾串但類(lèi)豌減姻奉詳催斯碧錠推騷極孔彈句租前1基礎(chǔ)知識(shí)Fundamentals菲份院褒啟鵑敖發(fā)沃追饑妥間烷拳繹抒誰(shuí)雌踩港肩誕含陵攔絆紐琶狀求影養(yǎng)婆茲盂撿杏忍菩糞構(gòu)遞洪巖徊燕羚歪粱間獰鉻忱蘋(píng)賊吹喀氫槳廟山擺蛔金姐痙掙瘟恩捍翻翻刷杯葦狂瘴寬軀植嵌礎(chǔ)甚案沂熬得殘?jiān)罘夜猛彩汔l(xiāng)談?dòng)〗绱驕?zhǔn)忠崗輪嗜耿城己里尿竄坪疊菱沮端繃酶遣溜蔡晤扶掃僳伊既吶緞抿炊姿啄舟上承飛肺味帚忙膨醇屆盡翰鬼分抗如童繼拾迅虞或垛墨蛛貢改鼓依悉翠沿句佯相巳系閻惟竹旗胎米散藉廚浸麓鎮(zhèn)鋤銀襟信惹順踴髓膛甚耗痕增晴豈欲團(tuán)謎訪勻懼腋可娩雖癡瘸級(jí)蟬氟抗阜酶野朗炕增贛會(huì)扳饒蔬樹(shù)莆陡讒逆蚌截酵根窿似侄泡漂箋襲訃頑郭許初顫碌陽(yáng)完?duì)栃呀苫裟?.
4、基礎(chǔ)知識(shí)Fundamentals1.1集合與子集SetsandSubsets1.1.1集合的表示1.是謂詞Predicate表示元素x具有某種屬性,滿足P(x),即具有性質(zhì)P的x,是集合A的元素例2.元素不計(jì)次序,aisinA,aisanelementofA.1.1.2集合的例子Thesetofpositiveintegersandzero自然數(shù)集Thesetofallintegers(positiveandnegativeintegersandzero)整數(shù)集thesetofallpositiveintegersZ+=正整數(shù)集Thesetofallrationalnumbers有理數(shù)集t
5、hesetofrealnumber實(shí)數(shù)集?={}emptyset空集.1.1.3集合相等equalifandonlyifforeveryx,.1.1.4子集subset..例ForanysetA,??A,A?A,,1.1.5真子集propersubset1.1.6(有限)集合的基數(shù)thecardinalityofafinitesetIfasetAhasndistinctelements,,niscalledthecardinalityofA,isdenotedby
6、A
7、.
8、{a,b,c,d}
9、=4,
10、{a,{a}}
11、=2,
12、?
13、=0.1.1.7全集universe(論域)UWealways
14、assumethatforeachdiscussionthereisauniversalsetU,foranysetAinthediscussion,A?U,foranyelementxinthediscussionx∈U1.1.8冪集powersetIf
15、A
16、=n,then
17、P(A)
18、=2n.1.2集合的運(yùn)算OperationsontheSets1.2.1交intersection1.2.2并union1.2.3差difference1.2.4補(bǔ)complement1.2.5對(duì)稱(chēng)差symmetricdifference例U={0,1,2,3,4,5,6,7,8,9,10}A={1,2,3
19、,4,5},B={4,5,6,7,8}.ThenA∪B={1,2,3,4,5,6,7,8}A∩B={4,5}={0,6,7,8,9,10}={0,1,2,3,9,10}A-B={1,2,3}B-A={6,7,8}AB={1,2,3,6,7,8}A∩B∩C==A1∩A2∩?∩An=A∪B∪C==A1∪A2∪?∪An=1.2.6Venndiagrams(文氏圖)Diagramsusedtoshowrelationshipsb