probabilistic reasoning with nave bayes and bayesian networks overview

probabilistic reasoning with nave bayes and bayesian networks overview

ID:34488046

大小:648.58 KB

頁數(shù):22頁

時間:2019-03-06

probabilistic reasoning with nave bayes and bayesian networks overview_第1頁
probabilistic reasoning with nave bayes and bayesian networks overview_第2頁
probabilistic reasoning with nave bayes and bayesian networks overview_第3頁
probabilistic reasoning with nave bayes and bayesian networks overview_第4頁
probabilistic reasoning with nave bayes and bayesian networks overview_第5頁
資源描述:

《probabilistic reasoning with nave bayes and bayesian networks overview》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、ProbabilisticReasoningwithNa?veBayesandBayesianNetworks1ZdravkoMarkov,IngridRussellJuly,2007OverviewBayesian(alsocalledBelief)Networks(BN)areapowerfulknowledgerepresentationandreasoningmechanism.BNrepresenteventsandcausalrelationshipsbetweenthemasconditionalprobabilitiesinvolvingrandomvariables.Give

2、nthevaluesofasubsetofthesevariables(evidencevariables)BNcancomputetheprobabilitiesofanothersubsetofvariables(queryvariables).BNcanbecreatedautomatically(learnt)byusingstatisticaldata(examples).Thewell-knownMachineLearningalgorithm,Na?veBayesisactuallyaspecialcaseofaBayesianNetwork.Theprojectallowsst

3、udentstoexperimentwithandusetheNa?veBayesalgorithmandBayesianNetworkstosolvepracticalproblems.Thisincludescollectingdatafromrealdomains(e.g.webpages),convertingthesedataintoproperformatsothatconditionalprobabilitiescanbecomputed,andusingBayesianNetworksandtheNa?veBayesalgorithmforcomputingprobabilit

4、iesandsolvingclassificationtasks.ObjectivesTheaimofthisprojectistoexposestudentstotwoimportantreasoningandlearningalgorithms–Na?veBayesandBayesianNetworks,andtoexploretheirrelationshipinthecontextofsolvingpracticalclassificationproblems.Inparticular,theobjectivesoftheprojectare:?LearningthebasicsofB

5、ayesianapproachtoMachineLearningandtheBayesianNetworksapproachtoProbabilisticReasoninginAI.?Gainingexperienceinusingrecentsoftwareapplicationsintheseareasforsolvingpracticalproblems.?BetterunderstandingoffundamentalconceptsofBayesianLearningandProbabilisticReasoningandtheirrelationshipinthemoregener

6、alcontextofknowledgerepresentationandreasoningmechanismsinAI.ProjectDescription1Correspondingauthor:markovz@ccsu.edu,DepartmentofComputerScience,CentralConnecticutStateUniversity,1615StanleyStreet,NewBritain,CT06050.SimilarlytotheWebdocumentclassificationproject(http://uhaweb.hartford.edu/compsci/cc

7、li/wdc.htm)thisprojectalsohasthreemainsteps:Datacollection,Datapreparation,andMachineLearning.Thefirsttwostepsofthetwoprojectsarebasicallythesame.Infact,documentsanddatasetsinWeka’sARFFformatpreparedf

當前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。