資源描述:
《【Linear Algebra Done Right】2nd Ed (1997) [Axler].pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、LinearAlgebraDoneRight,SecondEditionSheldonAxlerSpringerContentsPrefacetotheInstructorixPrefacetotheStudentxiiiAcknowledgmentsxvChapter1VectorSpaces1ComplexNumbers..........................2De?nitionofVectorSpace......................4PropertiesofVectorSpaces.....................11Subspaces
2、...............................13SumsandDirectSums........................14Exercises................................19Chapter2Finite-DimensionalVectorSpaces21SpanandLinearIndependence...................22Bases..................................27Dimension...............................31Exe
3、rcises................................35Chapter3LinearMaps37De?nitionsandExamples......................38NullSpacesandRanges.......................41TheMatrixofaLinearMap.....................48Invertibility..............................53Exercises................................59vviContent
4、sChapter4Polynomials63Degree.................................64ComplexCoef?cients........................67RealCoef?cients...........................69Exercises................................73Chapter5EigenvaluesandEigenvectors75InvariantSubspaces.........................76PolynomialsAppli
5、edtoOperators.................80Upper-TriangularMatrices.....................81DiagonalMatrices...........................87InvariantSubspacesonRealVectorSpaces...........91Exercises................................94Chapter6Inner-ProductSpaces97InnerProducts.............................98No
6、rms.................................102OrthonormalBases..........................106OrthogonalProjectionsandMinimizationProblems......111LinearFunctionalsandAdjoints..................117Exercises................................122Chapter7OperatorsonInner-ProductSpaces127Self-AdjointandNorma
7、lOperators................128TheSpectralTheorem........................132NormalOperatorsonRealInner-ProductSpaces........138PositiveOperators..........................144Isometries...............................147PolarandSingular-ValueDecompositions...