資源描述:
《Elevating Model Predictive Control Using Feedforward Artificial Neural Networks A Review.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、ChemicalProductandProcessModelingVolume4,Issue12009Article45ElevatingModelPredictiveControlUsingFeedforwardArtificialNeuralNetworks:AReviewSenthilKumarArumugasamy,UniversitiSainsMalaysiaZainalAhmad,UniversitiSainsMalaysiaRecommendedCitation:Arumugasamy,SenthilKumarandAhmad,Zainal(20
2、09)"ElevatingModelPredictiveControlUsingFeedforwardArtificialNeuralNetworks:AReview,"ChemicalProductandProcessModeling:Vol.4:Iss.1,Article45.DOI:10.2202/1934-2659.1424Availableat:http://www.bepress.com/cppm/vol4/iss1/45?2009BerkeleyElectronicPress.Allrightsreserved.ElevatingModelPre
3、dictiveControlUsingFeedforwardArtificialNeuralNetworks:AReviewSenthilKumarArumugasamyandZainalAhmadAbstractProcesscontrolinthefieldofchemicalengineeringhasalwaysbeenachallengingtaskforthechemicalengineers.Hence,themajorityofprocessesfoundinthechemicalindustriesarenon-linearandinthes
4、ecasestheperformanceofthelinearmodelscanbeinadequate.Recentlyapromisingalternativemodellingtechnique,artificialneuralnetworks(ANNs),hasfoundnumerousapplicationsinrepresentingnon-linearfunctionalrelationshipsbetweenvariables.Afeedforwardmulti-layeredneuralnetworkisahighlyconnectedset
5、ofelementarynon-linearneurons.Model-basedcontroltechniquesweredevelopedtoobtaintightercontrol.Manymodel-basedcontrolschemeshavebeenproposedtoincorporateaprocessmodelintoacontrolsystem.Amongthem,modelpredictivecontrol(MPC)isthemostcommonscheme.MPCisageneralandmathematicallyfeasiblesc
6、hemetointegrateourknowledgeaboutatarget,processcontrollerdesignandoperation,whichallowsflexibleandefficientexploitationofourunderstandingofatarget,andthusproducesoptimalperformanceofasystemundervariousconstraints.TheneedtohandlesomedifficultcontrolproblemshasledustouseANNinMPCandhas
7、recentlyattractedagreatdealofattention.Theefficacyoftheneuralpredictivecontrolwiththeabilitytoperformcomparablytothenonlinearneuralnetworkstrategyinbothsetpointtrackinganddisturbancerejectionprovestohavelesscomputationexpensefortheneuralpredictivecontrol.Theneuralnetworkmodelpredict
8、ivecontrol(NNMPC)me