Elevating Model Predictive Control Using Feedforward Artificial Neural Networks A Review.pdf

Elevating Model Predictive Control Using Feedforward Artificial Neural Networks A Review.pdf

ID:34565352

大?。?44.68 KB

頁數(shù):42頁

時(shí)間:2019-03-08

Elevating Model Predictive Control Using Feedforward Artificial Neural Networks A Review.pdf_第1頁
Elevating Model Predictive Control Using Feedforward Artificial Neural Networks A Review.pdf_第2頁
Elevating Model Predictive Control Using Feedforward Artificial Neural Networks A Review.pdf_第3頁
Elevating Model Predictive Control Using Feedforward Artificial Neural Networks A Review.pdf_第4頁
Elevating Model Predictive Control Using Feedforward Artificial Neural Networks A Review.pdf_第5頁
資源描述:

《Elevating Model Predictive Control Using Feedforward Artificial Neural Networks A Review.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、ChemicalProductandProcessModelingVolume4,Issue12009Article45ElevatingModelPredictiveControlUsingFeedforwardArtificialNeuralNetworks:AReviewSenthilKumarArumugasamy,UniversitiSainsMalaysiaZainalAhmad,UniversitiSainsMalaysiaRecommendedCitation:Arumugasamy,SenthilKumarandAhmad,Zainal(20

2、09)"ElevatingModelPredictiveControlUsingFeedforwardArtificialNeuralNetworks:AReview,"ChemicalProductandProcessModeling:Vol.4:Iss.1,Article45.DOI:10.2202/1934-2659.1424Availableat:http://www.bepress.com/cppm/vol4/iss1/45?2009BerkeleyElectronicPress.Allrightsreserved.ElevatingModelPre

3、dictiveControlUsingFeedforwardArtificialNeuralNetworks:AReviewSenthilKumarArumugasamyandZainalAhmadAbstractProcesscontrolinthefieldofchemicalengineeringhasalwaysbeenachallengingtaskforthechemicalengineers.Hence,themajorityofprocessesfoundinthechemicalindustriesarenon-linearandinthes

4、ecasestheperformanceofthelinearmodelscanbeinadequate.Recentlyapromisingalternativemodellingtechnique,artificialneuralnetworks(ANNs),hasfoundnumerousapplicationsinrepresentingnon-linearfunctionalrelationshipsbetweenvariables.Afeedforwardmulti-layeredneuralnetworkisahighlyconnectedset

5、ofelementarynon-linearneurons.Model-basedcontroltechniquesweredevelopedtoobtaintightercontrol.Manymodel-basedcontrolschemeshavebeenproposedtoincorporateaprocessmodelintoacontrolsystem.Amongthem,modelpredictivecontrol(MPC)isthemostcommonscheme.MPCisageneralandmathematicallyfeasiblesc

6、hemetointegrateourknowledgeaboutatarget,processcontrollerdesignandoperation,whichallowsflexibleandefficientexploitationofourunderstandingofatarget,andthusproducesoptimalperformanceofasystemundervariousconstraints.TheneedtohandlesomedifficultcontrolproblemshasledustouseANNinMPCandhas

7、recentlyattractedagreatdealofattention.Theefficacyoftheneuralpredictivecontrolwiththeabilitytoperformcomparablytothenonlinearneuralnetworkstrategyinbothsetpointtrackinganddisturbancerejectionprovestohavelesscomputationexpensefortheneuralpredictivecontrol.Theneuralnetworkmodelpredict

8、ivecontrol(NNMPC)me

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。