資源描述:
《modeling non stationary hidden semi-markov chains with triplet markov chains and theory of》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、IEEEWorkshoponStatisticalSignalProcessing(SSP2005),Bordeaux,France,July2005MODELINGNONSTATIONARYHIDDENSEMI-MARKOVCHAINSWITHTRIPLETMARKOVCHAINSANDTHEORYOFEVIDENCEWojciechPieczynskiINT/GET,DépartementCITI,CNRSUMR51579,rueCharlesFourier,91000Evry,FranceABS
2、TRACTone,areavailable,whichenablesunsupervisedestimationofXfromY.HiddenMarkovchains,enablingonetorecoverthehiddenClassically,HMC-INhavebeenextendedintwoprocessevenforverylargesize,arewidelyusedinvariousdirections:problems.Ontheonehand,ithasbeenrecently(
3、i)InHMC-INthehiddenchainXisaMarkovone,andestablishedthatwhenthehiddenchainisnotstationary,thusthesojourndurationdistributionineachstateistheuseofthetheoryofevidenceisequivalenttoconsiderexponential.Inhiddensemi-MarkovchainswithatripletMarkovchainandcani
4、mprovetheefficiencyofindependentnoise(HSMC-IN),whichformanextensionunsupervisedsegmentation.Ontheotherhand,hiddenofHMC-IN,thisdistributionisofanykind.HSMC-INaresemi-Markovchainscanalsobeconsideredasparticularusefulinmanysituations,asimagessequenceanalys
5、is[5],tripletMarkovchains.Theaimofthispaperistousethesespeechprocessing[6],orstilltrackingproblems[15],twopointssimultaneously.Consideringanonstationaryamongothers;hiddensemi-Markovchain,weshowthatitispossibleto(ii)morerecently,HMC-INhavebeenextendedtoc
6、onsidertwoauxiliaryrandomchainsinsuchawaythat“pairwiseMarkovchains”(PMC[9]),inwhichoneunsupervisedsegmentationofnonstationaryhiddensemi-directlyassumestheMarkovianityofZ=(X,Y)andinMarkovchainsisworkable.whichXisnolongernecessarilyaMarkovchain,andto“trip
7、letMarkovchains”(TMC[10,13]),inwhichoneintroducesathirdauxiliaryrandomchainU=(U,...,U)1n1.INTRODUCTIONandassumestheMarkovianityofthetripletT=(X,U,Y).WhentherandomvariablesU,...,UtakeLetZ=(X,Y),withX=(X,...,X),Y=(Y,...,Y)be1n1n1ntheirvaluesinadiscretefin
8、itespace,bothPMCandTMCtworandomchains,whereeachXtakesitsvaluesinistillenabletoestimateXfromYbyBayesianmethods.W={w1,...,wk}andeachYtakesitsvaluesinR.WeiLetusmentionthatTMCcanbealsousedwhenthethreewillsaythatZ=(X,Y)isaclassicalhid