modeling non stationary hidden semi-markov chains with triplet markov chains and theory of

modeling non stationary hidden semi-markov chains with triplet markov chains and theory of

ID:34651725

大小:134.39 KB

頁數(shù):6頁

時間:2019-03-08

modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第1頁
modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第2頁
modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第3頁
modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第4頁
modeling non stationary hidden semi-markov chains with triplet markov chains and theory of_第5頁
資源描述:

《modeling non stationary hidden semi-markov chains with triplet markov chains and theory of》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、IEEEWorkshoponStatisticalSignalProcessing(SSP2005),Bordeaux,France,July2005MODELINGNONSTATIONARYHIDDENSEMI-MARKOVCHAINSWITHTRIPLETMARKOVCHAINSANDTHEORYOFEVIDENCEWojciechPieczynskiINT/GET,DépartementCITI,CNRSUMR51579,rueCharlesFourier,91000Evry,FranceABS

2、TRACTone,areavailable,whichenablesunsupervisedestimationofXfromY.HiddenMarkovchains,enablingonetorecoverthehiddenClassically,HMC-INhavebeenextendedintwoprocessevenforverylargesize,arewidelyusedinvariousdirections:problems.Ontheonehand,ithasbeenrecently(

3、i)InHMC-INthehiddenchainXisaMarkovone,andestablishedthatwhenthehiddenchainisnotstationary,thusthesojourndurationdistributionineachstateistheuseofthetheoryofevidenceisequivalenttoconsiderexponential.Inhiddensemi-MarkovchainswithatripletMarkovchainandcani

4、mprovetheefficiencyofindependentnoise(HSMC-IN),whichformanextensionunsupervisedsegmentation.Ontheotherhand,hiddenofHMC-IN,thisdistributionisofanykind.HSMC-INaresemi-Markovchainscanalsobeconsideredasparticularusefulinmanysituations,asimagessequenceanalys

5、is[5],tripletMarkovchains.Theaimofthispaperistousethesespeechprocessing[6],orstilltrackingproblems[15],twopointssimultaneously.Consideringanonstationaryamongothers;hiddensemi-Markovchain,weshowthatitispossibleto(ii)morerecently,HMC-INhavebeenextendedtoc

6、onsidertwoauxiliaryrandomchainsinsuchawaythat“pairwiseMarkovchains”(PMC[9]),inwhichoneunsupervisedsegmentationofnonstationaryhiddensemi-directlyassumestheMarkovianityofZ=(X,Y)andinMarkovchainsisworkable.whichXisnolongernecessarilyaMarkovchain,andto“trip

7、letMarkovchains”(TMC[10,13]),inwhichoneintroducesathirdauxiliaryrandomchainU=(U,...,U)1n1.INTRODUCTIONandassumestheMarkovianityofthetripletT=(X,U,Y).WhentherandomvariablesU,...,UtakeLetZ=(X,Y),withX=(X,...,X),Y=(Y,...,Y)be1n1n1ntheirvaluesinadiscretefin

8、itespace,bothPMCandTMCtworandomchains,whereeachXtakesitsvaluesinistillenabletoestimateXfromYbyBayesianmethods.W={w1,...,wk}andeachYtakesitsvaluesinR.WeiLetusmentionthatTMCcanbealsousedwhenthethreewillsaythatZ=(X,Y)isaclassicalhid

當前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。