rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf

rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf

ID:34843837

大小:864.63 KB

頁數(shù):107頁

時間:2019-03-12

rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第1頁
rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第2頁
rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第3頁
rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第4頁
rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第5頁
資源描述:

《rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫。

1、MATH413[513](PHILLIPS)SOLUTIONSTOHOMEWORK1Generally,asolution"issomethingthatwouldbeacceptableifturnedinintheformpresentedhere,althoughthesolutionsgivenareoftenclosetominimalinthisrespect.Asolution(sketch)"istoosketchytobeconsideredacompletesolutionif

2、turnedin;varyingamountsofdetailwouldneedtobeˉlledin.Problem1.1:Ifr2Qnf0gandx2RnQ,provethatr+x;rx62Q.Solution:Weprovethisbycontradiction.Letr2Qnf0g,andsupposethatr+x2Q.Then,usingtheˉeldpropertiesofbothRandQ,wehavex=(r+x)?r2Q.Thusx62Qimpliesr+x62Q.Similar

3、ly,ifrx2Q,thenx=(rx)=r2Q.(Here,inadditiontotheˉeldpropertiesofRandQ,weuser6=0.)Thusx62Qimpliesrx62Q.Problem1.2:Provethatthereisnox2Qsuchthatx2=12.Solution:Weprovethisbycontradiction.Supposethereisx2Qsuchthatx2=12.Writex=minlowestterms.Thenx2=12impliesth

4、atm2=12n2.nSince3divides12n2,itfollowsthat3dividesm2.Since3isprime(andbyuniquefactorizationinZ),itfollowsthat3dividesm.Therefore32dividesm2=12n2.Since32doesnotdivide12,usingagainuniquefactorizationinZandthefactthat3isprime,itfollowsthat3dividesn.Wehavep

5、rovedthat3dividesbothmandn,contradictingtheassumptionthatthefractionmisinlowestterms.nAlternatesolution(Sketch):Ifx2Qsatisˉesx2=12,thenxisinQandsatisˉes?¢2x22=3.Nowprovethatthereisnoy2Qsuchthaty=3byrepeatingthe2pproofthat262Q.Problem1.5:LetA?Rbenonempty

6、andboundedbelow.Set?A=f?a:a2Ag.Provethatinf(A)=?sup(?A).Solution:Firstnotethat?Aisnonemptyandboundedabove.Indeed,Acontainssomeelementx,andthen?x2A;moreover,Ahasalowerboundm,and?misanupperboundfor?A.Wenowknowthatb=sup(?A)exists.Weshowthat?b=inf(A).That?b

7、isalowerboundforAisimmediatefromthefactthatbisanupperboundfor?A.Toshowthat?bisthegreatestlowerbound,weletc>?bandprovethatcisnotalowerboundforA.Now?c?c.Then?x2Aand?x

8、em1.6:Letb2Rwithb>1,ˉxedthroughouttheproblem.Comment:Wewillassumeknownthatthefunctionn7!bn,fromZtoR,isstrictlyincreasing,thatis,thatform;n2Z,wehavebm

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。
相關(guān)文章
更多
相關(guān)標簽