資源描述:
《基于粗糙集的屬性約簡(jiǎn)算法及其應(yīng)用研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、江南大學(xué)碩士學(xué)位論文基于粗糙集的屬性約簡(jiǎn)算法及其應(yīng)用研究姓名:顏艷申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):檢測(cè)技術(shù)與自動(dòng)化裝置指導(dǎo)教師:楊慧中20080301AbstractRoughSet限S)theory,introducedbyPawlakZ,isanovelmathematicaltooltodeal塒tllvaguenessanduncertainty.Itisapowerfulmathematicaltoolforanalyzinguncertain,fuzzyknowledgeandcaneffectivelydeal謝t11theimpre
2、cise,incomplete,oruncertaindata.Nowithasattractedmuchattentionofresearchersaroundtheword.Inrecentyears,ithasbeensuccessfullyappliedtodatamining,machinelearning,knowledgediscoveryfromdatabase,decisionsupportsystems,faultdiagnosisetc.Thisarticleemphaticallystudiesononeofthei
3、mportantproblemofRoughSettheory—也ereductionofthedecisiontable.Attributereductionpreservestheoriginalmeaningandreducestheirrelevantandunimportantknowledge.Thedetailsarestudiedasfollows:Inregardtoacompleteanddiscreteinformationsystem,considerattributereductionintheviewofinfo
4、rmationtheory.Adevelopedattributeimportancemeasuremethodisdefinedbasedonthemutualinformationbetweenselectedattributeanddecisionattribute,andthemeasureisusedastheheuristicinformationintheproposedalgorithm.Conditionalinformationentropyisusedtocomputerelevanceofattributesandi
5、tisusedinfitnessfunctionofgeneticalgorithmtoassurereductionhasfewattributesandrelevancebetweenattributes.TraditionalRoughSettheoryisgenerallyincapableofhandlingincompleteinformationsystem.AfterstudyingtheextensionsofRoughSetmodel,pointouttheirshortages.Foressentialityofatt
6、ributeexistingdifference,adevelopedattributeimportancemeasuremethodisdefinedbasedonthedifferencedegreeofattributes。It’Sproposed趴attributereductionalgorithmbasedonconnectiondegreeofessentialityofattribute.Anexampleshowsthattheproposedalgorithmisaneffectivemethod.AnothertheR
7、oughSettheorydefectwhichblocksitsdevelopmentandapplicationisthatitcallnotbeemployedoncontinuousvaluesdirectly.Previouslydiscretizationmethodisappliedbeforehandinordertotransformthedataintodiscretevalues,butthismayresultininformationloss.nlenotionsofsimilaritybetweenobjects
8、andimprovedgeneralimportantdegreeofanattributeareintroduced.Theglobalsimilaritymeasurebet