FOR FINANCIAL TIME-SERIES FORECASTING

FOR FINANCIAL TIME-SERIES FORECASTING

ID:37657836

大?。?20.49 KB

頁數(shù):35頁

時間:2019-05-27

FOR FINANCIAL TIME-SERIES FORECASTING_第1頁
FOR FINANCIAL TIME-SERIES FORECASTING_第2頁
FOR FINANCIAL TIME-SERIES FORECASTING_第3頁
FOR FINANCIAL TIME-SERIES FORECASTING_第4頁
FOR FINANCIAL TIME-SERIES FORECASTING_第5頁
資源描述:

《FOR FINANCIAL TIME-SERIES FORECASTING》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、ALONGMEMORYPATTERNMODELLINGANDRECOGNITIONSYSTEMFORFINANCIALTIME-SERIESFORECASTINGSameerSingh{s.singh@exeter.ac.uk}UniversityofExeterDepartmentofComputerSciencePrinceofWalesRoadExeterEX44PTSingh,S."ALongMemoryPatternModellingandRecognitionSystemforFinancialForecasting",PatternAnalysi

2、sandApplications,vol.2,issue3,pp.264-273,1999.1ALONGMEMORYPATTERNRECOGNITIONANDMODELLINGSYSTEMFORFINANCIALTIME-SERIESFORECASTINGABSTRACTInthispaper,theconceptofalongmemorysystemforforecastingisdeveloped.PatternModellingandRecognitionSystemsareintroducedaslocalapproximationtoolsforfo

3、recasting.Suchsystemsareusedformatchingcurrentstateofthetime-serieswithpaststatestomakeaforecast.Inthepast,thissystemhasbeensuccessfullyusedforforecastingtheSantaFecompetitiondata.Inthispaper,weforecastthefinancialindicesofsixdifferentcountriesandcomparetheresultswithneuralnetworkso

4、nfivedifferenterrormeasures.Theresultsshowthatpatternrecognitionbasedapproachesintime-seriesforecastingarehighlyaccurateandtheseareabletomatchtheperformanceofadvancedmethodssuchasneuralnetworks.21.MOTIVATIONTime-seriesforecastingisanimportantresearchareainseveraldomains.Traditionall

5、y,forecastingresearchandpracticehasbeendominatedbystatisticalmethods.Morerecently,neuralnetworksandotheradvancedmethodsonpredictionhavebeenusedinfinancialdomains[1-3].Aswegettoknowmoreaboutthedynamicnatureofthefinancialmarkets,theweaknessesoftraditionalmethodsbecomeapparent.Inthelas

6、tfewyears,researchhasfocussedonunderstandingthenatureoffinancialmarketsbeforeapplyingmethodsofforecastingindomainsincludingstockmarkets,financialindices,bonds,currenciesandvaryingtypesofinvestments.Peters[4]notesthatmostfinancialmarketsarenotGaussianinnatureandtendtohavesharperpeaks

7、andfattails,aphenomenonwellknowinpractice.Inthefaceofsuchevidence,anumberoftraditionalmethodsbasedonGaussiannormalityassumptionhavelimitationsmakingaccurateforecasts.OneofthekeyobservationsexplainedbyPeters[4]isthefactthatmostfinancialmarketshaveaverylongmemory;whathappenstodayaffec

8、tsthefutureforever.

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。