Track and vertex reconstruction

Track and vertex reconstruction

ID:39224293

大?。?.80 MB

頁(yè)數(shù):40頁(yè)

時(shí)間:2019-06-28

Track and vertex reconstruction_第1頁(yè)
Track and vertex reconstruction_第2頁(yè)
Track and vertex reconstruction_第3頁(yè)
Track and vertex reconstruction_第4頁(yè)
Track and vertex reconstruction_第5頁(yè)
資源描述:

《Track and vertex reconstruction》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、REVIEWSOFMODERNPHYSICS,VOLUME82,APRIL–JUNE2010Trackandvertexreconstruction:FromclassicaltoadaptivemethodsAreStrandlie*Gj?vikUniversityCollege,P.O.Box191,N-2802Gj?vik,Norway?RudolfFrühwirthInstituteofHighEnergyPhysicsoftheAustrianAcademyofSciences,NikolsdorferGasse18,A-1050

2、Wien,AustriaPublished7May2010Thispaperreviewsclassicalandadaptivemethodsoftrackandvertexreconstructioninparticlephysicsexperiments.Adaptivemethodshavebeendevelopedtomeettheexperimentalchallengesathigh-energycolliders,inparticular,theCERNLargeHadronCollider.Theycanbechara

3、cterizedbytheobliterationofthetraditionalboundariesbetweenpatternrecognitionandstatisticalestimation,bythecompetitionbetweendifferenthypothesesaboutwhatconstitutesatrackoravertex,andbyahighlevelof?exibilityandrobustnessachievedwithaminimumofassumptionsaboutthedata.Thetheor

4、eticalbackgroundofsomeoftheadaptivemethodsisdescribed,anditisshownthatthereisacloseconnectionbetweenthetwomainbranchesofadaptivemethods:neuralnetworksanddeformabletemplates,ontheonehand,androbuststochasticTlterswithannealing,ontheotherhand.Asbothclassicalandadaptivemethods

5、oftrackandvertexreconstructionpresupposepreciseknowledgeofthepositionsofthesensitivedetectorelements,thepaperincludesanoverviewofdetectoralignmentmethodsandasurveyofthealignmentstrategiesemployedbypastandcurrentexperiments.DOI:10.1103/RevModPhys.82.1419PACSnumbers:02.70.

6、Rr,07.05.Kf,07.05.Mh,29.85.FjCONTENTSD.VertexTtting14291.Least-squaresmethodsforvertexTtting14292.RobustvertexTtting1431I.Introduction14203.VertexTndingbyiteratedTtting1431II.ClassicalMethodsofTrackandVertexIII.AdaptiveMethods1432Reconstruction1421A.HopTeldneuralnetworks14

7、32A.TrackTnding1422B.Elasticnetsanddeformabletemplates14341.Conformalmapping1422C.Gaussian-sumTlter14372.HoughandLegendretransforms1422D.EMalgorithmandadaptivetrackTtting14393.Trackroad1422E.Comparativestudies14414.Trackfollowing1423F.AdaptivevertexTtting1443B.TrackTtting1

8、423IV.DetectorAlignment14451.Trackparametrization1423A.Introduction14452.Trackmodel1423B.

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。