Data Mining Techniques for Effective and Scalable Traffic Analysis

Data Mining Techniques for Effective and Scalable Traffic Analysis

ID:39358304

大小:365.62 KB

頁數(shù):14頁

時間:2019-07-01

Data Mining Techniques for Effective and Scalable Traffic Analysis_第1頁
Data Mining Techniques for Effective and Scalable Traffic Analysis_第2頁
Data Mining Techniques for Effective and Scalable Traffic Analysis_第3頁
Data Mining Techniques for Effective and Scalable Traffic Analysis_第4頁
Data Mining Techniques for Effective and Scalable Traffic Analysis_第5頁
資源描述:

《Data Mining Techniques for Effective and Scalable Traffic Analysis》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫

1、DataMiningTechniquesforEffectiveandScalableTrafficAnalysisM.Baldi,E.Baralis,F.RissoDipartimentodiAutomaticaeInformatica-PolitecnicodiTorinoCorsoDucadegliAbruzzi,2410129Torino,Italy{mario.baldi,elena.baralis,fulvio.risso}@polito.itAbstractThispaperdescribesa

2、novelapproachtotrafficanalysisinhighspeednetworksbasedondataminingtechniques.Dataminingtechniquesarehereappliedasameanstoeffectivelyprocessthesignificantamountofcaptureddata.Thepaperprovidesafirstevaluationoftheproposedapproachintermsofitsabilityofextractin

3、grelevantinformationanditscomputationalrequirements.Suchevaluationisbasedonexperimentsrunonaprototypalimplementationoftheproposedapproach.KeywordsTrafficAnalysis,NetworkMonitoring,DataMining1.IntroductionOneofthemostcriticalissuesinkeepinganetworkundercontr

4、oliscapturingandanalyzingitstraffic.Thecomplexityofthesetasksisincreasingasnetworksbecomefasterandfaster.MajorproblemsstemfromtheCPUpowerneededtoprocesscapturednetworktrafficandthestoragerequirementsofhistoricaldata.Often,trafficcapturingandanalysisgoesthro

5、ughthestepsdepictedinFigure1,allofwhicharecriticalwhenoperatingathighdatarates.Somelimitedprocessing(e.g.associatingeachpackettoitscorrespondingflow)iscarriedoutinreal-timeimmediatelyduringthecapturesession.Then,resultscanbestoredonadisktobefurtherelaborate

6、dwithoff-linetools,whichdonotsufferthelimitationsstemmingfromreal-timeprocessing.Ad-hocsolutionsbasedonadvancedhardware(e.g.thenetworkinterfacecardsprovidedbyEndace[16])andtheuseofSMPworkstationsorevenclusterscanmitigatetheproblemsrelatedtoon-linemonitoring

7、andanalysis(thefirststepsinFigure1).However,nostraightforwardsolutionexiststoreducethecriticalitiesofthesubsequentsteps.Forinstance,a10Gbpspipecarriesmorethan100TBytesinthecourseofaday,whichisatremendousamountofdatatobestoredforsubsequentprocessing.Thisresu

8、ltsintwoproblems:ontheonehand,theinfrastructureneededtostoresuchamountofdataissophisticatedandcostlyand,ontheotherhand,locatingrelevantinformationwithinthesaveddataiscomputationallyintenseandtimeconsum

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。