A Data Mining Approach for Spatial Modeling in Small Area Load Forecast

A Data Mining Approach for Spatial Modeling in Small Area Load Forecast

ID:39711524

大小:307.95 KB

頁數(shù):6頁

時間:2019-07-09

A Data Mining Approach for Spatial Modeling in Small Area Load Forecast_第1頁
A Data Mining Approach for Spatial Modeling in Small Area Load Forecast_第2頁
A Data Mining Approach for Spatial Modeling in Small Area Load Forecast_第3頁
A Data Mining Approach for Spatial Modeling in Small Area Load Forecast_第4頁
A Data Mining Approach for Spatial Modeling in Small Area Load Forecast_第5頁
A Data Mining Approach for Spatial Modeling in Small Area Load Forecast_第6頁
資源描述:

《A Data Mining Approach for Spatial Modeling in Small Area Load Forecast》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、516IEEETRANSACTIONSONPOWERSYSTEMS,VOL.17,NO.2,MAY2002ADataMiningApproachforSpatialModelinginSmallAreaLoadForecastHung-ChihWuandChan-NanLu,SeniorMember,IEEEAbstract—Inacompetitivepowermarket,locationsoffutureandfromwhichpredictionofthefuturespatialloa

2、dgrowthcanloadgrowthhavetobedescribedwithsufficientgeographicpreci-beobtained.siontopermitvalidmarketingstrategyandsitingoffutureT&DDomainexpertforspatialloadforecastishardtofind.Dataequipment.Smallarealoadforecastwhichprovidesinformationofmining(DM)

3、techniquewhichissuccessfulinmanyindustrialfutureelectricdemandthatincludesspatialandtemporalcharac-teristics,isusefulforT&Dandmarketplanning.Domainexpertsapplications,canbeusedinthispurposetoextractautomaticallyforspatialloadforecastrequirelongtermpr

4、acticingandaredif-avalidandusefulinformationfromlargedatabases.Ingeneral,ficulttofind.Inordertocapturethemeaningfulassociationsbe-theDMprocessincludesfivebasicsteps[4]–[7].tweenspatialdataandtheloadchanges,andtoprovideauseful1)DataSelection:Thisstepi

5、ncludesidentifyingthedatatotoolforspatialloadforecast,adataminingtechniquebasedona“KnowledgeDiscoveryinDatabase(KDD)”procedureispro-bemined,thenchoosingappropriateinputattributesandposedtodetermineautomaticallythepreferential“scores”oflandoutputinfor

6、mationtorepresentthetask.Effectiveimple-usechanges.Theproposedspatialmodelingapproachisanex-mentationanduseofthetoolsrequiressignificantexper-ploratorydataanalysis,tryingtodiscoverusefulpatternsinspatialtiseinextracting,manipulating,andanalyzingdataf

7、romdatathatarenotobvioustothedatauserandareusefulinthespa-alargedatawarehouse.tialloadforecast.2)DataFilteringandPreprocessing:InvolvedherearebasicIndexTerms—Datamining,fuzzymodel,knowledgediscoveryoperationssuchastheremovalofoutliers,collectingthein

8、database,spatialloadforecast.necessaryinformationtomodeloraccountfornoise,de-cidingonstrategiesforhandlingmissingdatafields,ac-I.INTRODUCTIONcountingforknownchanges,andappropriatenormaliza-tion.NADEREGULATEDenvironment,retailmarketpartici-3)DataConve

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。