Uncertain Data Mining- An Example in Clustering Location Data

Uncertain Data Mining- An Example in Clustering Location Data

ID:39820536

大?。?38.18 KB

頁數(shù):5頁

時間:2019-07-12

Uncertain Data Mining- An Example in Clustering Location Data_第1頁
Uncertain Data Mining- An Example in Clustering Location Data_第2頁
Uncertain Data Mining- An Example in Clustering Location Data_第3頁
Uncertain Data Mining- An Example in Clustering Location Data_第4頁
Uncertain Data Mining- An Example in Clustering Location Data_第5頁
資源描述:

《Uncertain Data Mining- An Example in Clustering Location Data》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、UncertainDataMining:AnExampleinClusteringLocationDataMichaelChau1,ReynoldCheng2,BenKao3,andJackeyNg11SchoolofBusiness,TheUniversityofHongKong,Pokfulam,HongKongmchau@business.hku.hk,jackeyng@hkusua.hku.hk2DepartmentofComputing,HongKongPolytechnicUniversity

2、,Kowloon,HongKongcsckcheng@comp.polyu.edu.hk3DepartmentofComputerScience,TheUniversityofHongKong,Pokfulam,HongKongkao@cs.hku.hkAbstract.Datauncertaintyisaninherentpropertyinvariousapplicationsduetoreasonssuchasoutdatedsourcesorimprecisemeasurement.Whendat

3、amin-ingtechniquesareappliedtothesedata,theiruncertaintyhastobeconsideredtoobtainhighqualityresults.WepresentUK-meansclustering,analgorithmthatenhancestheK-meansalgorithmtohandledatauncertainty.WeapplyUK-meanstotheparticularpatternofmoving-objectuncertain

4、ty.Experimentalre-sultsshowthatbyconsideringuncertainty,aclusteringalgorithmcanproducemoreaccurateresults.1IntroductionInapplicationsthatrequireinteractionwiththephysicalworld,suchaslocation-basedservices[6]andsensormonitoring[3],datauncertaintyisaninhere

5、ntpropertyduetomeasurementinaccuracy,samplingdiscrepancy,outdateddatasources,orotherer-rors.Althoughmuchresearchefforthasbeendirectedtowardsthemanagementofuncertaindataindatabases,fewresearchershaveaddressedtheissueofminingun-certaindata.Wenotethatwithunc

6、ertainty,datavaluesarenolongeratomic.Toap-plytraditionaldataminingtechniques,uncertaindatahastobesummarizedintoatomicvalues.Unfortunately,discrepancyinthesummarizedrecordedvaluesandtheactualvaluescouldseriouslyaffectthequalityoftheminingresults.Figure1ill

7、us-tratesthisproblemwhenaclusteringalgorithmisappliedtomovingobjectswithlocationuncertainty.Ifwesolelyrelyontherecordedvalues,manyobjectscouldpossiblybeputintowrongclusters.Evenworse,eachmemberofaclusterwouldchangetheclustercentroids,thusresultinginmoreer

8、rors.Fig.1.(a)Thereal-worlddataarepartitionedintothreeclusters(a,b,c).(b)Therecordedlocationsofsomeobjects(shaded)arenotthesameastheirtruelocation,thuscreatingclustersa’,b’,c’andc’’.(c)Whenlineuncertaintyisconsidere

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。