(Quasi)periodic solutions in (in)finite dimensional

(Quasi)periodic solutions in (in)finite dimensional

ID:39887646

大?。?28.36 KB

頁數(shù):14頁

時(shí)間:2019-07-14

(Quasi)periodic solutions in (in)finite dimensional_第1頁
(Quasi)periodic solutions in (in)finite dimensional_第2頁
(Quasi)periodic solutions in (in)finite dimensional_第3頁
(Quasi)periodic solutions in (in)finite dimensional_第4頁
(Quasi)periodic solutions in (in)finite dimensional_第5頁
資源描述:

《(Quasi)periodic solutions in (in)finite dimensional》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、Portugal.Math.(N.S.)PortugaliaeMathematicaVol.xx,Fasc.,200x,xxx–xxxcEuropeanMathematicalSociety(Quasi)periodicsolutionsin(in)?nitedimensionalhamiltoniansystemswithapplicationstoCelestialMechanicsandwaveequationLucaBiasco,EnricoValdinoci?Abstract.Wedescribeagen

2、eralmethod,basedonaLyapunov–Schmidtreductionandperturbativetechniques,recentlyusedbytheauthorsto?ndperiodicandquasi–periocidsolutionsbothin?niteandinin?nitedimensionalhamiltoniansystems.WealsoillustratesomeconcreteapplicationstoCelestialMechanicsandtononlinear

3、waveequation.MathematicsSubjectClassi?cation(2000).Primary34C25,35L05,70F10,34C27;Secondary37K50,37J40,70K43.Keywords.Nearly–integrableHamiltoniansystems,periodicsolutionslowerdimen-sionalelliptictori.N–bodyproblem,waveequation.IntroductionInthisnote,wedealwit

4、hfourtopics:Spatialplanetarythree-bodyproblem.Weconsiderone“star”andtwo“planets”,modelledbythreemassivepoints,interactingthroughgravityinathree-dimensionalspace.Nearthelimitingsolutionsgivenbythetwoplanetsrevolv-ingaroundthestaronKeplerianellipseswithsmallecce

5、ntricityandsmallnon-zeromutualinclination,thesystemisprovedtohavetwo-dimensional,elliptic,quasiperiodicsolutions,providedthemassesoftheplanetsaresmallenoughcom-paredtothemassofthestarandprovidedtheosculatingKeplerianmajorsemiaxesbelongtoatwo-dimensionalsetofde

6、nsityclosetoone.Planarplanetarymany-bodyproblem.Asabove,butone“star”andN“planets”,theinteriortwoonesbiggerthantheothers(asintheexteriorsolarsystem).NearthelimitingsolutionsgivenbytheNplanetsrevolvingaroundthe?SupportedbyMIURVariationalMethodsandNonlinearDi?ere

7、ntialEquations.2BiascoValdinocistaronKeplerianellipseswithsmalleccentricityandzeromutualinclination,thesystemisprovedtohaveN-dimensional,elliptic,quasiperiodicsolutions.PeriodicorbitsapproachinglowerdimensionalellipticKAMtori.ByageneralBirkho?-Lewis-Conley-Zeh

8、nder-typeresult,weprovetheexistenceofin?nitelymanyperiodicsolutions,withlargerandlargerminimalperiod,accumu-latingontoellipticinvarianttoriofHamiltoniansystems.Asanapplication,peri

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。