[PDF] Blind Source Separation and Independent Component Analysis

[PDF] Blind Source Separation and Independent Component Analysis

ID:39992098

大?。?.55 MB

頁數(shù):57頁

時(shí)間:2019-07-16

[PDF] Blind Source Separation and Independent Component Analysis_第1頁
[PDF] Blind Source Separation and Independent Component Analysis_第2頁
[PDF] Blind Source Separation and Independent Component Analysis_第3頁
[PDF] Blind Source Separation and Independent Component Analysis_第4頁
[PDF] Blind Source Separation and Independent Component Analysis_第5頁
資源描述:

《[PDF] Blind Source Separation and Independent Component Analysis》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、NeuralInformationProcessing-LettersandReviewsVol.6,No.1,January2005REVIEWBlindSourceSeparationandIndependentComponentAnalysis:AReviewSeungjinChoiDepartmentofComputerSciencePohangUniversityofScienceandTechnologySan31,Hyoja-dong,Nam-gu,Pohang,Gyungbuk790-784,KoreaE-mail:seungjin@postech.ac

2、.krAndrzejCichockiRIKEN,BrainScienceInstitute,2-1Hirosawa,Wako,Saitama351-0198,JapanWarsawUniversityofTechnology,PolandE-mail:cia@bsp.brian.riken.go.jpHyung-MinParkandSoo-YoungLeeDepartmentofBioSystems,DepartmentofElectricalEngineeringandComputerScience,andCHUNGMoonSoulCenterforBioInform

3、ationandBioElectronics,KoreaAdvancedInstituteofScienceandTechnology373-1Guseong-dong,Yuseong-gu,Daejeon305-701,KoreaE-mail:fhmpark,syleeg@kaist.ac.kr(SubmittedonOctober20,2004)Abstract-Blindsourceseparation(BSS)andindependentcomponentanalysis(ICA)aregenerallybasedonawideclassofunsupervis

4、edlearningalgorithmsandtheyfoundpotentialapplicationsinmanyareasfromengineeringtoneuroscience.ArecenttrendinBSSistoconsiderproblemsintheframeworkofmatrixfactorizationormoregeneralsignalsdecompositionwithprobabilisticgenerativeandtreestructuredgraphicalmodelsandexploitaprioriknowledgeabou

5、ttruenatureandstructureoflatent(hidden)variablesorsourcessuchasspatio-temporaldecorrelation,statisticalindependence,sparseness,smoothnessorlowestcomplexityinthesensee.g.,ofbestpredictability.Thepossiblegoalofsuchdecompositioncanbeconsideredastheestimationofsourcesnotnecessarystatisticall

6、yindependentandparametersofamixingsystemormoregenerallyas?ndinganewreducedorhierarchicalandstructuredrepresentationfortheobserved(sensor)datathatcanbeinterpretedasphysicallymeaningfulcodingorblindsourceestimation.Thekeyissueisto?ndasuchtransformationorcoding(linearornonlinear)whichhastru

7、ephysicalmeaningandinterpretation.WepresentareviewofBSSandICA,includingvariousalgorithmsforstaticanddynamicmodelsandtheirapplications.Thepapermainlyconsistsofthreeparts:(1)BSSalgorithmsforstaticmodels(instantaneousmixtures);(2)extensionofBSSandICAincorporatingwithsparsene

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。