Introduction to Mathematical Fluid Dynamics_Univ_of_Michigan

Introduction to Mathematical Fluid Dynamics_Univ_of_Michigan

ID:40081620

大小:2.70 MB

頁數(shù):138頁

時間:2019-07-20

Introduction to  Mathematical Fluid Dynamics_Univ_of_Michigan_第1頁
Introduction to  Mathematical Fluid Dynamics_Univ_of_Michigan_第2頁
Introduction to  Mathematical Fluid Dynamics_Univ_of_Michigan_第3頁
Introduction to  Mathematical Fluid Dynamics_Univ_of_Michigan_第4頁
Introduction to  Mathematical Fluid Dynamics_Univ_of_Michigan_第5頁
資源描述:

《Introduction to Mathematical Fluid Dynamics_Univ_of_Michigan》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫。

1、Math654IntroductiontoMathematicalFluidDynamicsProfessorCharlieDoeringTranscriptionbyIanTobascoUniversityofMichigan,Winter2011Math654,Lecture11/5/11–1Lecture1:Vectors,Tensors,andOperators1Vectors:NotationandOperationsGivenavectorx∈R3,wecanwriteitwithr

2、especttothecanonicalbasis{?i,?j,k?}asx=x?i+y?j+zk?.Inthismanner,wecande?nevector?eldsasv(x,y,z)=u(x,y,z)?i+v(x,y,z)?j+w(x,y,z)k?.Notethatsometimesthecanonicalbasisiswrittenas{e?1,e?2,e?3},andsimilarlyx=x1e?1+x2e?2+x3e?3,v(x1,x2,x3)=v1(x1,x2,x3)e?1+v2

3、(x1,x2,x3)e?2+v3(x1,x2,x3)e?3.InthiswayweeasilygeneralizetoRd,withavector?eldbeingXdv(x1,...,xd)=vi(x1,...,xd)e?ii=1orjustv(x)=vi(x)e?iusing“Einsteinnotation.”1Thefunctionviscommonlyreferredtoasthe“ithcomponent”ofthevectori?eld.Wehavethefollowingoper

4、ationsonpairsofvectors.De?nition1.Thedotproduct(orinnerproduct)ofv,w∈Rdisde?nedasv·w=viwi.Wecanarriveatthiswiththefollowingformalism.First,de?nethedotproductonthecanonicalbasisas(1i=je?i·e?j=δij=.0i6=jThenwritev=vie?iandw=wje?j,andde?nev·w=viwj(e?i·e

5、?j).Carryingouttheimpliedsummationyieldstheearlierde?nition.De?nition2.Theouterproductofv,w∈Rdisalinearself-mappingofRdde?nedviavw=viwje?ie?j,wheree?ie?jisthelinearself-mappingofRdhavingasmatrixrepresentationinthecanonicalbases(e?ie?j)mn=δimδjn.So,th

6、eouterproductofv,w∈Rdproducesthelinearmapwiththecanonicalmatrixrepresentation(vw)mn=vmwn,aso-called“dyadictensor.”Thisbringsustothenexttopic.1Ahandynotationwhererepeatedindicesimplysummation.Math654,Lecture11/5/11–22TensorsDe?nition3.A2-tensoronRdisa

7、bilinearformonRd.Speci?cally,T:Rd×Rd→Risa2-tensorifitsatis?es1.Component-wiseadditivity:T(v+v0,w)=T(v,w)+T(v0,w)T(v,w+w0)=T(v,w)+T(v,w0),2.Component-wisehomogeneity:T(αv,w)=αT(v,w)T(v,βw)=βT(v,w),givenα,β∈R.Proposition1.Thesetof2-tensorsonRdisisomorp

8、hictothesetoflinearself-mapsofRd.Inotherwords,2-tensorsarematrices;wepursuethisideathroughouttherestofthissection.First,justasthesetoflinearself-mapsofRdformsalinearspace,thesetof2-tensorsonRdformsalinearspace.Moreover,onecaneasilyshowthat{e?ie?j}1≤i

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。