資源描述:
《Introduction to the Finite Element Method in Electromagnetics》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、P1:IML/FFXP2:IML/FFXQC:IML/FFXT1:IMLMOBK021-FMMOBK021-Polycarpou.clsApril29,200620:15IntroductiontotheFiniteElementMethodinElectromagneticsiP1:IML/FFXP2:IML/FFXQC:IML/FFXT1:IMLMOBK021-FMMOBK021-Polycarpou.clsApril29,200620:15Copyright?2006byMorgan&ClaypoolAllrightsre
2、served.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotationsinprintedreviews,withoutthepriorpermissionofthepublisher.IntroductiontotheFiniteEleme
3、ntMethodinElectromagneticsAnastasisC.Polycarpouwww.morganclaypool.com1598290460paperPolycarpou1598290479ebookPolycarpouDOI10.2200/S00019ED1V01Y200604CEM004APublicationintheMorgan&ClaypoolPublishers’seriesSYNTHESISLECTURESONCOMPUTATIONALELECTROMAGNETICSLecture#4FirstE
4、dition10987654321PrintedintheUnitedStatesofAmericaiiP1:IML/FFXP2:IML/FFXQC:IML/FFXT1:IMLMOBK021-FMMOBK021-Polycarpou.clsApril29,200620:15IntroductiontotheFiniteElementMethodinElectromagneticsAnastasisC.PolycarpouIntercollege,CyprusSYNTHESISLECTURESONCOMPUTATIONALELEC
5、TROMAGNETICS#4MMorgan&ClaypoolPublishers&CiiiP1:IML/FFXP2:IML/FFXQC:IML/FFXT1:IMLMOBK021-FMMOBK021-Polycarpou.clsApril29,200620:15Tomyparents,andtomywifeanddaughterivP1:IML/FFXP2:IML/FFXQC:IML/FFXT1:IMLMOBK021-FMMOBK021-Polycarpou.clsApril29,200620:15vABSTRACTThisser
6、ieslectureisanintroductiontothe?niteelementmethodwithapplicationsinelectro-magnetics.The?niteelementmethodisanumericalmethodthatisusedtosolveboundary-valueproblemscharacterizedbyapartialdifferentialequationandasetofboundaryconditions.Thegeometricaldomainofaboundary-v
7、alueproblemisdiscretizedusingsub-domainelements,calledthe?niteelements,andthedifferentialequationisappliedtoasingleelementafteritisbroughttoa“weak”integro-differentialform.Asetofshapefunctionsisusedtorepresenttheprimaryunknownvariableintheelementdomain.Asetoflineareq
8、uationsisobtainedforeachelementinthediscretizeddomain.Aglobalmatrixsystemisformedaftertheassemblyofallelements.Thislectureisdivided