Advances in Large Margin Classifiers

Advances in Large Margin Classifiers

ID:40373639

大?。?.22 MB

頁(yè)數(shù):423頁(yè)

時(shí)間:2019-08-01

Advances in Large Margin Classifiers_第1頁(yè)
Advances in Large Margin Classifiers_第2頁(yè)
Advances in Large Margin Classifiers_第3頁(yè)
Advances in Large Margin Classifiers_第4頁(yè)
Advances in Large Margin Classifiers_第5頁(yè)
資源描述:

《Advances in Large Margin Classifiers》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)

1、OFRELATEDINTERESTAdvancesinKernelMethodsSupportVectorLearningADVANCESINLARGEMARGINCLASSIFIERSeditedbyBernhardSch?lkopf,ChristopherJ.C.Burges,andAlexanderJ.SmolaADVANCESINTheSupportVectorMachineisapowerfulnewlearningalgorithmforsolvingaADVANCESINLARGEMARGINvarietyoflearningan

2、dfunctionestimationproblems,suchaspatternrecognition,regressionestimation,andoperatorinversion.CLASSIFIERSTheimpetusforthiscollectionwasaworkshoponSupportSMOLALARGEMARGINVectorMachinesheldatthe1997NIPSconference.TheeditedbyAlexanderJ.Smola,PeterJ.Bartlett,contributors,bothun

3、iversityresearchersandengineersBernhardSch?lkopf,andDaleSchuurmansdevelopingapplicationsforthecorporateworld,.CLASSIFIERSTheconceptoflargemarginsisaunifyingprincipleformaWho’sWhoofthisexcitingnewarea.BARTLETTfortheanalysisofmanydifferentapproachestotheclassificationofdatafro

4、mexamples,includingboost-ing,mathematicalprogramming,neuralnetworks,andsupportvectormachines.Thefactthatitisthemargin,orconfidencelevel,ofaclassification—that.is,ascaleparameter—ratherthanarawtraininger-SCH?LKOPFrorthatmattershasbecomeakeytoolfordealingwithclassifiers.Thisbo

5、okshowshowthisideaap-pliestoboththetheoreticalanalysisandthedesignofalgorithms.Thebookprovidesanoverviewofrecentdevelop-.mentsinlargemarginclassifiers,examinesconnec-SCHUURMANStionswithothermethods(e.g.,Bayesianinference),andidentifiesstrengthsandweaknessesofthemethod,aswell

6、asdirectionsforfutureresearch.AmongthecontributorsareManfredOpper,PulsedNeuralNetworksEDITEDBYVladimirVapnik,andGraceWahba.editedbyWolfgangMaassandChristopherM.BishopMostpracticalapplicationsofartificialneuralnetworksarebasedonaALEXANDERJ.SMOLAAlexanderJ.Smolaisaresearcherin

7、theDepart-computationalmodelinvolvingthepropagationofcontinuousvari-ablesfromoneprocessingunittothenext.Inrecentyears,dataEDITORSPETERL.BARTLETTmentofEngineeringandRSISE,AustralianNationalUniversity.PeterL.BartlettisSeniorFellow,Com-fromneurobiologicalexperimentshavemadeitin

8、creasinglyBERNHARDSCH?LKOPFputerSciencesLaboratory,AustralianNationalUni-cl

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。