Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients

Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients

ID:40381356

大?。?.97 MB

頁(yè)數(shù):9頁(yè)

時(shí)間:2019-08-01

Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第1頁(yè)
Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第2頁(yè)
Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第3頁(yè)
Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第4頁(yè)
Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients_第5頁(yè)
資源描述:

《Driver Eye State Classification Based on Cooccurrence Matrix of Oriented Gradients》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、HindawiPublishingCorporationAdvancesinMechanicalEngineeringArticleID707106ResearchArticleDriverEyeStateClassificationBasedonCooccurrenceMatrixofOrientedGradientsBoZhang,WenjunWang,andBoChengStateKeyLaboratoryofAutomotiveSafetyandEnergy,TsinghuaUniversity,Beijing100084,ChinaCorre

2、spondenceshouldbeaddressedtoBoCheng;chengbo@tsinghua.edu.cnReceived19August2014;Accepted4November2014AcademicEditor:HongweiGuoCopyright?BoZhangetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproduct

3、ioninanymedium,providedtheoriginalworkisproperlycited.Accuratedetectionofdriver’seyestatebycomputervisioniscriticaltodriverdrowsinessmonitoring.Thehistogramoforientedgradients(HOG)iscommonlyusedasdescriptivefeatureofeyeimageforstateclassification.However,HOGoftensuffersfromtheli

4、mitoflocalgradientinformation.ThispaperproposesanewHOG-likefeatureofeyeimage,calledcooccurrencematrixoforientedgradients(CMOG),forthepurposeofmoreeffectivelyclassifyingtheeyestate.Byintroducingthecooccurrencematrix,theCMOGenhancestheabilityofdescribingglobalgradientinformationof

5、eyeimages.TheZJUeyeblinkdatabaseisusedasthebaselineimagesforperformancecomparison.TheclassificationresultsshowthattheaccuracyofCMOGreachesupto95.9%incomparisonwith91.9%byHOGunderthisdatabase.1.Introductionimportantfactorinthiskindofmethods.Manytypesoffeaturesfromeyeimageshavebee

6、nproposedbynowadaysThedrivereyestate,thatis,openingandclosing,istheresearchers,suchasHOG(HistogramsofOrientedGradi-mostsalientfacialexpressionrelatedtodriverdrowsiness.ents)[4],LBP(LocalBinaryPatterns)[5],GaborwaveletsEyestateclassificationbasedoncomputervisionplaysan[6],Eigeney

7、e[7],andASEF(AverageofSyntheticExactimportantroleinthefieldofdrowsinessmonitoring.ItisaFilters)[8].TakingLBP,forexample,itusesthedifferencechallengingtasktodetectdrowsinessfromeyeimagesowingbetweenpixelsinalocalscaletorepresenttheimagewhichtovariablefacialexpression,randomillumi

8、nation,andheadisinsensitivetoilluminationchangi

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。