資源描述:
《stochastic-calculus-solutions》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、1StochasticCalculusforFinanceSolutionstoExercisesChapter1Exercise1.1:Showthatforeachn,therandomvariablesK(1),...,K(n)areindependent.Solution:SinceK(r)havediscretedistributions,theindependenceofK(1),...,K(n)meansthatforeachsequenceV1,...,Vn,Vi∈{U,D}wehaveP(K(1)
2、=V1,K(2)=V2,...,K(n)=Vn)=P(K(1)=V1)·...·P(K(n)=Vn).FixasequenceV1,...,Vn.Startbysplittingtheinterval[0,1]intotwointervalsI,Ioflength1,I={ω:K(1)=U},I={ω:K(1)=D}.UD2UDRepeatthesplittingforeachintervalateachstage.AtstagetwowehaveIU=IUU∪IUD,ID=IDU∪IDDandthevariabl
3、eK(2)isconstantoneachIαβ.Forexample,IUD={ω:K(1)=U,K(2)=D}.Usingthisnotationwehave{K(1)=V1}=IV1,{K(1)=V1,K(2)=V2}=IV1,V2,...{K(1)=V1,...,K(n)=Vn}=IV1,...,Vn.TheLebesguemeasureofIis1,sothatV1,...,Vn2n1P(K(1)=V1,...,K(n)=Vn)=2n.Fromthede?nitionofK(r)followsdirect
4、lyP(K(1)=V1)·...P(K(n)=V)=1.n2nExercise1.2:RedesigntherandomvariablesK(n)sothatP(K(n)=U)=p∈(0,1),arbitrarySolution:Giventheprobabilityspace(?,F,P)=([0,1],B([0,1]),m),wheremdenotestheLebesguemeasure,wewillde?neasequenceofran-domvariablesK(n),n=1,2,....on?.First
5、split[0,1]intotwosubintervals:[0,1]=IU∪ID,whereIU,IDaredisjointintervalswithlengths
6、IU
7、=p,
8、ID
9、=q,p+q=1,withIUtotheleftonID..Nowset2SolutionstoExercises()Uifω∈IUK(1,ω)=.Difω∈IDClearlyP(K(1)=U)=p,P(K(1)=D)=q.Repeattheproceduresep-aratelyonIUandID,splittingeachin
10、totwosubintervalsintheproportionptoq.ThenI=I∪I,I=I∪I,
11、I
12、=p2,
13、I
14、=pq,UUUUDDDUDDUUUD
15、I
16、=qp,
17、I
18、=q2.RepeatingthisrecursiveconstructionntimesweDUDDobtainintervalsoftheformIα1,...,αr,withαieitherUorD,andwithlengthplqr?l,wherel=#{α:α=U}.iiAgainset()Uifω∈Iα1,...,αr?1,U
19、K(r,ω)=.Difω∈Iα1,...,αr?1,DIfthevalueUappearsltimesinasequenceα1,...,αr?1,then
20、Iα1,...,αr?1,U
21、=pplqr?1?l.Therearer?1di?erentsequencesα,...,αhavingUexactlyl1r?1atlplaces.ThenforAr={K(r)=U}we?ndXr?1!r?1lr?1?lP(Ar)=P(K(r)=U)=ppqll=0r?1=p(p+q)=pAsaconsequenceisP
22、(K(r)=D)=q.TheproofthatthevariablesK(1),...,K(n)areindependentfollowsasinEx.1.1.Exercise1.3:Findthe?ltrationin?=[0,1]generatedbytheprocessX(n,ω)=2ω1[0,1?1](ω).nSolution:SinceX(1)(ω