Law of large numbers for non-additive measures

Law of large numbers for non-additive measures

ID:40456461

大?。?52.62 KB

頁數(shù):12頁

時間:2019-08-03

Law of large numbers for non-additive measures_第1頁
Law of large numbers for non-additive measures_第2頁
Law of large numbers for non-additive measures_第3頁
Law of large numbers for non-additive measures_第4頁
Law of large numbers for non-additive measures_第5頁
資源描述:

《Law of large numbers for non-additive measures》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、Lawoflargenumbersfornon-additivemeasuresYannR′ebill′e?AbstractOuraimistogiveforsomeclassesnon-additivemeasuressomelimittheorems.Forbalancedgamesweobtainaweakandstronglawoflargenumbersforboundedrandomvariables,asharperconclusionisobtainwithexactgames.Weprovideanextensiontoupperenveloppemeasures.Keywo

2、rds:Lawoflargenumbers,exactgames,multi-priormodel.AMSClassi?cation:28C15,91A121IntroductionNon-additivemeasuresarenowadaysstudiedindi?erent?eldofexpertise.Theyareoriginallyknownascapacitiesinpotentialtheory([4]),gameswithtransfer-ableutilitiyincooperativegametheory,fuzzymeasuresinarti?cialintelligen

3、ceorarXiv:0801.0984v1[math.PR]7Jan2008impreciseprobabilitiesinstatistics.SinceKolmogorov’s([8])axiomatictreatiseonprobability,themeasuretheoreticapproachbecamethestandardframework.σ-additivemeasuresturnedouttobetheappropriateobjectstomodelrandomphenomenon.Amajorrequirementforagoodprobabilitytheoryis

4、tobeabletogiveafrequentistjusti?cationtoprobabilitynumbersvialimitfrequenciesorequivalentlylawsoflargenumbersshouldhold.Weaddressthisquestionfornon-additivemeasures.Animportantclassofgameswhichcontainsomeverymildadditivityconditionsarebalancedgames([2],[12])andwithmorestructure,ex-actgames([13]).Thi

5、sgamesareparticularlyimportantsincetheyintroducethecore,akeyconcepttounderstandthegeometryofagame.AnaturalapproachistointroducetheusualMarkov’sconditionstoobtainweakandstronglawoflargenumbersforbalancedandexactgames.Ourresultscanbesharpenedthroughupperintegrals.Thereinterestforupperintegralsrelyonth

6、epossibilitytodeal?Universit′eParisI,CERMSEM,106-112boulevarddel’Hopital,75647ParisCedex13,France.E-mailaddress:yann.rebille@noos.fr12withsetofmeasures.Thisgivesamore?exibletreatementofuncertaintyindeci-sionmakingtheoryasinthemulti-priormodelofGilboa-Schmeidler(1989)([7],see[3]forσ-measures).Ourappr

7、oachismoreelementaryanddeparturesfromtheexistingtopologicalresults,wherepowerfulanalyticalmethodsareused,seeMarinacci([10])forcompactspacesandMaccheroni-Marinacci([9])forpolishspaces.2De?nitionLet(?,A

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。