Graphical Models

Graphical Models

ID:40632443

大?。?26.11 KB

頁數(shù):12頁

時間:2019-08-05

Graphical Models_第1頁
Graphical Models_第2頁
Graphical Models_第3頁
Graphical Models_第4頁
Graphical Models_第5頁
資源描述:

《Graphical Models》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、GraphicalModelsJinlongWu&TiejunLiNov20081IntroductionJordan[3]presentesaveryconciseintroductiontoGraphicalModels(GMs):Graphicalmodelsareamarriagebetweenprobabilitytheoryandgraphtheory.Theyprovideanaturaltoolfordealingwithtwoproblemsthatoccurthroughoutapplied

2、mathematicsandengineering—uncer-taintyandcomplexity—andinparticulartheyareplayinganincreasinglyimportantroleinthedesignandanalysisofmachinelearningalgorithms.Fundamentaltotheideaofagraphicalmodelisthenotionofmodularity—acomplexsystemisbuiltbycombiningsimpler

3、parts.Probabilitytheoryprovidesthegluewherebythepartsarecombined,ensuringthatthesystemasawholeisconsistent,andprovidingwaystointerfacemodelstodata.Thegraphtheoreticsideofgraphicalmodelsprovidesbothanintuitivelyappeal-inginterfacebywhichhumanscanmodelhighly-i

4、nteractingsetsofvariablesaswellasadatastructurethatlendsitselfnaturallytothedesignofef?cientgeneral-purposealgorithms.Manyoftheclassicalmultivariateprobabilisticsystemsstudiedin?eldssuchasstatistics,systemsengineering,informationtheory,patternrecognitionands

5、tatisticalmechanicsarespecialcasesofthegeneralgraphicalmodelformalism—examplesincludemixturemodels,factoranalysis,hiddenMarkovmodels,Kalman?ltersandIsingmodels.Thegraphicalmodelframeworkprovidesawaytoviewallofthesesystemsasinstancesofacommonunderlyingformali

6、sm.Thisviewhasmanyadvantages—inparticular,specializedtechniquesthathavebeendevelopedinone?eldcanbetransferredbetweenresearchcommunitiesandexploitedmorewidely.Moreover,thegraphicalmodelformalismprovidesanaturalframeworkforthedesignofnewsystems.GMsareusuallydi

7、videdintotwotypes—undirectedanddirected.UndirectedGMsarealsocalledMarkovNetworksorMarkovRandomFields(MRFs),anddirectedGMsarealsoknownasBayesianNetworks(BNs),beliefnetworks,generativemodelsorcausalmodels.1.1DirectedGMs(BayesianNetworks)[4]InBayesianNetworks(B

8、Ns)eachvertexrepresentsarandomvariable,andanarcfromvertexXtovertexY(wealsosaidthatXisoneoftheparentsofY)meansXisoneofthereasonswhyYhappens,i.e.,XcausesY.HenceBNsareacyclic.BNsassumethatavariable

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。